References
- Ministry of Health and Welfare, http://ncov.mohw.go.kr/
- F. Stephany, N. Stoehr, P. Darius, L. Neuhauser, O. Teutloff & F. Braesemann. (2020). The CoRisk-Index: A data-mining approach to identify industry-specific risk assessments related to COVID-19 in real-time. arXiv preprint arXiv:2003.12432.
- R. M. del Rio-Chanona, P. Mealy, A. Pichler, F. Lafond & J. D. Farmer. (2020). Supply and demand shocks in the COVID-19 pandemic: An industry and occupation perspective. Oxford Review of Economic Policy, 36(Supplement_1), 94-137.
- S. Ramelli & A. Wagner. (2020). What the stock market tells us about the consequences of COVID-19. Mitigating the COVID Economic Crisis: Act Fast and Do Whatever, 63-70.
- K. Lybarger, M. Ostendorf, M. Thompson & M. Yetisgen. (2020). Extracting covid-19 diagnoses and symptoms from clinical text: A new annotated corpus and neural event extraction framework. arXiv preprint arXiv:2012.00974.
- X. Cheng, Q. Cao & S. S. Liao. (2020). An overview of literature on COVID-19, MERS and SARS: Using text mining and latent Dirichlet allocation. Journal of Information Science, 1-17. DOI : 10.1177/0165551520954674
- J. H. Bettencourt-Silva et al. (2020). Exploring the Social Drivers of Health During a Pandemic: Leveraging Knowledge Graphs and Population Trends in COVID-19. Studies in Health Technology and Informatics, 275, 6-11. DOI : 10.3233/SHTI200684
- A. Walker, C. Hopkins & P. Surda. (2020). Use of Google Trends to investigate loss-of-smell-related searches during the COVID-19 outbreak. In International forum of allergy & rhinology, 10(7), 839-847. DOI : 10.1002/alr.22580
- K. Garcia & L. Berton. (2021). Topic detection and sentiment analysis in Twitter content related to COVID-19 from Brazil and the USA. Applied Soft Computing, 101. DOI : 10.1016/j.asoc.2020.107057
- A. Abd-Alrazaq, D. Alhuwail, M. Househ, M. Hamdi & Z. Shah. (2020). Top concerns of tweeters during the COVID-19 pandemic: infoveillance study. Journal of medical Internet research, 22(4). DOI : 10.2196/19016
- K. Chakraborty, S. Bhatia, S. Bhattacharyya, J. Platos, R. Bag & A. E. Hassanien. (2020). Sentiment Analysis of COVID-19 tweets by Deep Learning Classifiers-A study to show how popularity is affecting accuracy in social media. Applied Soft Computing, 97. DOI : 10.1016/j.asoc.2020.106754
- S. K. Brooks et al. (2020). The psychological impact of quarantine and how to reduce it: rapid review of the evidence. The lancet, 395(10227), 912-920. DOI : 10.1016/S0140-6736(20)30460-8
- A. Kusters & E. Garrido. (2020). Mining PIGS. A structural topic model analysis of Southern Europe based on the German newspaper Die Zeit (1946-2009). Journal of Contemporary European Studies, 28(4), 477-493. DOI : 10.1080/14782804.2020.1784112
- B. M'sik & B. M. Casablanca. (2020). Topic Modeling Coherence: A Comparative Study between LDA and NMF Models using COVID'19 Corpus. International Journal, 9(4). DOI : 10.30534/ijatcse/2020/231942020
- S. M. Heo & J. Y. Yang. (2020). Analysis of Research Topics and Trends on COVID-19 in Korea Using Latent Dirichlet Allocation (LDA). Journal of The Korea Society of Computer and Information, 25(12), 83-91. DOI : 10.9708/jksci.2020.25.12.083
- D. H. Lee, Y. J. Kim, D. H. Lee, H. H. Hwang, S. K. Nam & J. Y. Kim. (2020). The Influence of Public Fear, and Psycho-social Experiences during the Coronavirus Disease 2019(COVID-19) Pandemic on Depression and Anxiety in South Korea. The Korean Journal of Counseling and Psychotherapy, 32(4), 2119-2156. DOI : 10.23844/kjcp.2020.11.32.4.2119
- E. J. Kim, H. M. Sim, J. W. Won & B. J. Kang. (2020). Mapping the COVID-19 Issues from an Urban Perspective in South Korea - Text Mining Analysis Focused on Newspaper Articles. Journal of the Urban Design Institute of Korea Urban Design, 21(6), 163-179. DOI : 10.38195/judik.2020.12.21.6.163
- Y. H. Kim. (2020). Exploration of social conflict issues and future signals since the outbreak of COVID-19 in Korea: Using the keywords of news articles. In conference of Korean Academy of Social Welfare, 565-589.
- S. Y. Song & H. K. Kim. (2020). Exploring Factors Influencing College Students' Satisfaction and Persistent Intention to Take Non-Face-to-Face Courses during the COVID-19 Pandemic. Asian Journal of Education, 21(4), 1099-1126. DOI : 10.15753/aje.2020.12.21.4.1099
- S. B. Kim. (2020). COVID-19 and the Complex Geopolitics of Emerging Security : The Emergence of Pandemic and the Transformation of World Politics. Korean Political Science Review, 54(4), 53-81. DOI : 10.18854/kpsr.2020.54.4.003
- M. W. Lee & J. E. You. (2020). The Socio-Economic Effects of COVID-19: Focusing on Consumer Expenditure and Labor Market. Asia-Pacific Journal of Business & Commerce, 12(3), 121-141. DOI : 10.35183/ajbc.2020.11.12.3.121
- J. S. Kim, N. K. Kang, S. M. Park, E. J. Lee & K. T. Chung. (2020). Diagnostic Techniques for SARS-CoV-2 Detection. Journal of Life Science, 30(8), 731-741. DOI : 10.5352/JLS.2020.30.8.731
- H. G. Oh. (2020). Analysis of major social changes and information security issues after COVID-19. Communications of the Korean Institute of Information Scientists and Engineers, 38(9), 48-56.
- S. M. Lee, S. E. Ryu. & S. J. Ahn. (2020). Mass Media and Social Media Agenda Analysis Using Text Mining : focused on '5-day Rotation Mask Distribution System'. JOURNAL OF THE KOREA CONTENTS ASSOCIATION. 20(6), 460-469. DOI : 10.5392/JKCA.2020.20.06.460
- D. M. Blei, A. Y. Ng & M. I. Jordan. (2003). Latent dirichlet allocation. the Journal of machine Learning research, 3, 993-1022. DOI : 10.1162/jmlr.2003.3.4-5.993
- J. Y. Yang. (2019). Convergence Study on Research Topics for Thyroid Cancer in Korea. Journal of the Korea Convergence Society, 10(2), 75-81. DOI : 10.15207/JKCS.2019.10.2.075
- M. E. Roberts, B. M., Stewart & E. M. Airoldi. (2016). A model of text for experimentation in the social sciences. Journal of the American Statistical Association, 111(515), 988-1003. DOI : 10.1080/01621459.2016.1141684
- M. E. Roberts, B. M. Stewart & D. Tingley. (2019). Stm: An R package for structural topic models. Journal of Statistical Software, 91(1), 1-40. DOI : 10.18637/jss.v091.i02
- J. Cao, T. Xia, J. Li, Y. Zhang & S. Tang. (2009). A density-based method for adaptive LDA model selection. Neurocomputing, 72(7-9), 1775-1781. DOI : 10.1016/j.neucom.2008.06.011
- R. Arun, V. Suresh, C. V. Madhavan & M. N. Murthy. (2010, June). On finding the natural number of topics with latent dirichlet allocation: Some observations. In Pacific-Asia conference on knowledge discovery and data mining (pp. 391-402). Berlin, Heidelberg. : Springer. DOI : 10.1007/978-3-642-13657-3_43
- T. L. Griffiths & M. Steyvers. (2004). Finding scientific topics. Proceedings of the National academy of Sciences, 101(suppl 1), 5228-5235. DOI: 10.1073/pnas.0307752101
- R. Deveaud, E. SanJuan & P. Bellot. (2014). Accurate and effective latent concept modeling for ad hoc information retrieval. Document numerique, 17(1), 61-84. DOI : 10.3166/DN.17.1.61-84
- K. Krippendorff. (2018). Content analysis: An introduction to its methodology. Los Angeles : Sage publications.
- A. F. Hayes & K. Krippendorff. (2007). Answering the call for a standard reliability measure for coding data. Communication methods and measures, 1(1), 77-89. DOI : 10.1080/19312450709336664
- C. Buchta, M. Kober, I. Feinerer & K. Hornik. (2012). Spherical k-means clustering. Journal of Statistical Software, 50(10), 1-22.
- P. J. Rousseeuw. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 20, 53-65. DOI : 10.1016/0377-0427(87)90125-7
- I. T. Jolliffe. (2002). Principal Component Analysis. New York : Springer-Verlag
- M. Hu & B. Liu. (2004, August). Mining and summarizing customer reviews. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 168-177). Seattle : KDD'04
- F. A. Nielsen. (2011). A new ANEW: Evaluation of a word list for sentiment analysis in microblogs. arXiv preprint arXiv:1103.2903.
- H. M. Salihu, A. A. Salinas-Miranda, L. Hill & K. Chandler. (2013). Survival of pre-viable preterm infants in the United States: a systematic review and meta-analysis. In Seminars in perinatology, 37(6), 389-400. DOI : 10.1053/j.semperi.2013.06.021
- H. J. Song. et al. (2020). In validations we trust? The impact of imperfect human annotations as a gold standard on the quality of validation of automated content analysis. Political Communication, 37(4), 550-572. DOI : 10.1080/10584609.2020.1723752