DOI QR코드

DOI QR Code

The Statistical Study on the Effects of Physicochemical Properties of Soil on Single Extraction Methods for Heavy Metals

토양의 물리화학적 특성이 중금속 단일용출법에 미치는 영향에 대한 통계학적 연구

  • Han, Hyeop-Jo (Department of Energy and Resources Engineering, Chonnam National University) ;
  • Song, Chang-Woo (Department of Energy and Resources Engineering, Chonnam National University) ;
  • Lee, Jong-Un (Department of Energy and Resources Engineering, Chonnam National University)
  • 한협조 (전남대학교 에너지자원공학과) ;
  • 송창우 (전남대학교 에너지자원공학과) ;
  • 이종운 (전남대학교 에너지자원공학과)
  • Received : 2021.03.24
  • Accepted : 2021.04.09
  • Published : 2021.04.28

Abstract

The effects of the physicochemical properties of soil such as soil pH, cation exchange capacity, and organic matter content on single extraction of Cd, Cr, Cu, Ni, Pb, and Zn using CaCl2, HOAc, HNO3, and DTPA were statistically investigated for 69 agricultural soils in Korea. Correlation analysis and multiple regression analysis were applied for soil samples which were grouped on the basis of average values of the physicochemical properties of the soil. Diluted HNO3 extracted higher concentrations of Cr, Cu, Ni, and Pb when compared with the other extractants, however, similar amounts of Cd and Zn were extracted by HOAc with HNO3. The results of correlation analysis indicated that DTPA extraction showed a high correlation with other single and pseudo-total extraction methods, and the physicochemical properties of soil influenced the concentrations of heavy metals leached by the single extraction methods. In the case of Zn, high correlations between pseudo-total and the studied single extraction methods were observed. As a result of regression analysis, it was found that the physicochemical properties of the soil could explain up to 74% of variances of the single extraction results. These results indicate that the physicochemical properties of the soil can have a direct influence on the concentrations of heavy metals extracted by the single extraction methods.

국내 69개 농경지 토양 내 Cd, Cr, Cu, Ni, Pb, Zn을 대상으로 하여 토양 pH, 양이온교환능력, 유기물 함량 등의 물리화학적 특성이 CaCl2, HOAc, HNO3, DTPA 등을 이용한 중금속의 단일용출 결과에 미치는 영향을 통계학적으로 조사하였다. 통계학적 분석은 토양의 물리화학적 특성의 평균값을 기준으로 높고 낮은 두 표본으로 구분한 후 이에 대해 상관분석과 다중회귀분석을 수행하였다. Cr, Cu, Ni, Pb의 경우 HNO3를 적용하였을 때 다른 추출제에 비하여 높은 함량이 추출되었으나, Cd, Zn의 경우 HOAc를 이용한 추출에서도 유사한 함량이 추출되었다. 상관관계 조사 결과, DTPA 추출이 다른 단일용출 및 전함량과 상관관계가 높았으며, 토양의 물리화학적 특성이 단일용출 결과에 영향을 미치는 것으로 나타났다. Zn의 경우, 전함량과 모든 단일용출법들에 의한 추출 함량이 상호 높은 상관관계를 보였다. 회귀분석 결과, 토양의 물리화학적 특성은 최대 74%에 이르는 단일용출 결과의 분산을 설명할 수 있는 것으로 나타났다. 이러한 결과는 토양의 물리화학적 특성이 단일용출 결과에 직접적인 영향을 미칠 수 있음을 나타낸다.

Keywords

References

  1. Boyle, J. (2004) A comparison of two methods for estimating the organic matter content of sediments. J. Paleolimn., v.31, p.125-127. doi: 10.1023/b:jopl.0000013354.67645.df
  2. Chiou, W.-Y. and Hsu, F.-C. (2019) Copper toxicity and prediction models of copper content in leafy vegetables. Sustainability, v.11, p.6215. doi: 10.3390/su11226215
  3. DIN (Deutsches Institut fur Normung), 1997. Bodenbeschaffenheit- Extraktion von Spurenelementen mit Ammoniumnitratlosung (ISO 19730:2008), Germany. doi: 10.31030/1517786
  4. Han, H.-J., Ko, M.-S., Ko, J.I., and Lee, J.-U. (2020) Study on soil extraction methods for contamination assessment of heavy metals in soil. J. Korean Soc. Miner. Energy Resour. Eng., v.57, n.5, 471-482. doi: 10.32390/ksmer.2020.57.5.471
  5. Heemsbergen, D.A., Warne, M.S.J., Broos, K., Bell, M., Nash, D., McLaughlin, M., Whatmuff, M., Barry, G., Pritchard, D., and Penney, N. (2009) Application of phytotoxicity data to a new Australian soil quality guideline framework for biosolids. Sci. Tot. Environ., v.407, p.2546-2556. doi: 10.1016/j.scitotenv.2009.01.016
  6. Houba, V.J.G., Temminghoff, E.J.M., Gaikhorst, G.A., and van Vark, W. (2000) Soil analysis procedure using 0.01 M calcium chloride as extraction reagent. Commun. Soil Sci. Plant Anal., v.31, p.1299-1396. doi: 10.1080/00103620009370514
  7. Kabata-Pendias, A., (1993) Behavioural properties of trace metals in soils. J. Appl. Geochem., v.8, p3-9. doi: 10.1016/s0883-2927(09)80002-4
  8. Kelepertzis, E., Paraskevopoulou, V., Argyraki, A., Fligos, G., and Chalkiadaki, O. (2015) Evaluation of single extraction procedures for the assessment of heavy metal extractability in citrus agricultural soil of a typical Mediterranean environment (Argolida, Greece). J. Soils Sediments, v.15, p.2265-2275. doi: 10.1007/s11368-015-1163-x
  9. Kim, G.H., Kim, G.Y., Kim, J.K., S, D.M., Seo, J.S., Son, B.K., Yang, J.E., Um, K.C., Lee, S.E., Jeong, K.Y., Jeong, D.Y., Jeong, Y.T., Jeong, J.B., and Hyeon, H.N. (2009) Soil science, 2nd Ed. Hyangmoon-sa, Seoul, Korea, 195p.
  10. Krishnamurti, G.S.R. and Naidu, R. (2003) Solid-solution equilibria of cadmium in soils. Geoderma, v.113, p.17-30. doi: 10.1016/s0016-7061(02)00313-0
  11. Lim, G.H., Kim, K.H., Seo, B.H., and Kim, K.R. (2014) Transfer function for phytoavailable heavy metals in contaminated agricultural soil. Korean J. Environ. Agric., v.33, p.271-281. doi: 10.5338/kjea.2014.33.4.271
  12. Lima, E.S.A., Sobrinho, N.M.B,A., Perez, D.V., and Coutinho, I.B. (2016) Comparing methods for extracting heavy metals from histosols for establishing quality reference values. Rev. Bras. Cienc. Solo, v.40, e0150097. doi: 10.1590/18069657rbcs20150097
  13. Lindsay, W.L. and Norvell, W.A. (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J., v.42, p.421-428. doi: 10.2136/sssaj1978.03615995004200030009x
  14. Lo, I.M.C. and Yang, X.Y. (1999) EDTA extraction of heavy metals from different soil fractions and synthetic soils. Water Air Soil Pollut., v.109, p.219-236. doi: 10.1023/A:1005000520321
  15. Meers, E., Laing, G.D., Unamuno, V., Ruttens, A., Vangronsveld, J., Tack, F.M.G., and Verloo, M.G. (2007a) Comparison of cadmium extractability from soils by commonly used single extraction protocols. Geoderma, v.141, p.247-259. doi: 10.1016/j.geoderma.2007.06.002
  16. Meers, E., Samson, R., Tack, F.M.G., Ruttens, A., Vandegehuchte, M., Vangronsveld, J., and Verloo, M.G. (2007b) Phytoavailability assessment of heavy metals in soils by single extractions and accumulation by Phaseolus vulgaris. Environ. Exp. Bot., v.60, p.385-396. doi: 10.1016/j.envexpbot.2006.12.010
  17. Ministry of Environment (MOE) (2020) Report on soil measurement network and soil contamination actual condition in 2019. 2021.01.15, http://webbook.me.go.kr/DLi-File/091/027/003/5671217.pdf.
  18. Rauret, G., Lopez-Sanchez, J.F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., and Quevauviller, Ph. (1999) Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit., v.1, p.57-61. doi: 10.1039/a807854h
  19. Roh, A.S., Park, J.S., Kim, Y.H., and Kang, S.S. (2015) Status and changes in chemical properties of paddy soil in Gyeonggi Province. Korean J. Soil. Sci. Fert., v.48, p.436-441. doi: 10.7745/kjssf.2015.48.5.436
  20. Salazar, M.J., Rodriguez, J.H., Nieto, G.L., and Pignata, M.L. (2012) Effects of heavy metal concentrations (Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [Glycine max (L.) Merrill]. J. Hazard. Mater., v.233-234, p.244-253. doi: 10.1016/j.jhazmat.2012.07.026
  21. Seo, B.-H., Lim, G.-H., Kim, K.-H., Kim, J.-E., Hur, J.-H., Kim, W.-I., and Kim, K.-R. (2013) Comparison of single extractions from evaluation of heavy metals phytoavailability in soil. Korean J. Environ. Agric., v.32, p.171-178. doi: 10.5338/kjea.2013.32.3.171
  22. Song, C.-W., Han, H.-J., and Lee, J.-U. (2019) Investigation on geochemical characteristics of heavy metals in soils in the vicinity of Samcheonpo and Hadong coal-fired power plants in Korea. Econ. Environ. Geol, v.52, p.141-158. doi: 10.9719/EEG.2019.52.2.141
  23. Sungur, A., Soylak, M., and Ozcan, H. (2014) Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: relationship between soil properties and heavy metals availability. Chem. Spec. Bioavailab., v.26, p.219-230. doi: 10.3184/095422914x14147781158674
  24. Tessier, A., Campbell, P.G.C., and Bisson, M. (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem., v.51, p.844-851. doi: 10.1021/ac50043a017
  25. Tipping, E., Pieuwerts, J., Pan, G., Ashmore, M.R., Lofts, S., Hill, M.T.R., Farago, M.E., and Thornton, I. (2003) The solid-solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales. Environ. Pollut., v.125, p.213-225. doi: 10.1016/s0269-7491(03)00058-7
  26. van Ranst, E., Verloo, M., Demeyer, A., and Pauwels, J.M. (1999) Manual for the soil chemistry and fertility laboratory. University of Gent, Belgium.
  27. VSBo, 1986. Verordnung uber Schadstoffhegalt im Boden, Swiss ordinance on pollutants in soils. Nr. 814.12, Publ. Eidg. Drucksachen und Materialzentrale (EDMZ), 3000 Bern, Switzerland.
  28. Zhang, M.K., Liu, Z.Y., and Wang, H. (2010) Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Commun. Soil Sci. Plant Anal., v.41, p.820-831. doi: 10.1080/00103621003592341
  29. Zhu, Q.H., Huang, D.Y., Liu, S.L., Luo, Z.C., Zhu, H.H., Zhou, B., Lei, M., Rao, Z.X., and Cao, X.L. (2012) Assessment of single extraction methods for evaluating the immobilization effect of amendments on cadmium in contaminated acidic paddy soil. Plant Soil Environ., v.58, p.98-103. doi: 10.17221/358/2011-pse
  30. Zimmerman, A.J. and Weindorf, D.C. (2010) Heavy metal and trace metal analysis in soil by sequential extraction: a review of procedure. Int. J. Anal. Chem., v.2010, p.1-7. doi: 10.1155/2010/387803