DOI QR코드

DOI QR Code

How Content Affects Clicks: A Dynamic Model of Online Content Consumption

  • Received : 2021.08.10
  • Accepted : 2021.11.29
  • Published : 2021.12.31

Abstract

With many consumers being exposed to news via social media platforms, news organizations are challenged to attract visitors and generate revenue during visits to their websites. They therefore need detailed information on how to write articles and headlines to increase visitors' engagement with the content to drive advertising revenues. For those news organizations whose business model depends mainly on advertisements, rather than subscriptions, it is particularly crucial to understand what makes the website attractive to their visitors, what drives users to stay on the website, and what factors affect a user's exit decision. The current research examines individual news consumers' choices to find patterns of increase or decrease in user engagement relative to a variety of topics, as well as to the mood or tone of the content. Using clickstream data from a major news organization, the authors develop a user-level dynamic model of clickstream behavior that takes into account the content of both headlines and stories that visitors read. The authors find that readers appear to exhibit state dependence in the tone of the articles that they read. They also show how the topics expressed in headlines can affect the amount of content readers consume when visiting the news organization to a much larger degree than the topics expressed in the content of the article. Online publishers can make use of such findings to present visitors with content that is likely to maintain and/or increase their engagement and consequently drive advertising revenue.

Keywords

References

  1. Ahn, D. H., Jin, S. A. A., and Ritterfeld, U. (2012), "Sad movies don't always make me cry" the cognitive and affective processes underpinning enjoyment of tragedy. Journal of Media Psychology, 24(1), 9-18. https://doi.org/10.1027/1864-1105/a000058
  2. Bell, D. R., and Lattin, J. M. (1998). Shopping behavior and consumer preference for store price format: Why 'large basket' shoppers prefer EDLP. Marketing Science, 17(1), 66-88.
  3. Berger, J., and Milkman, K. L. (2012). What makes online content viral? Journal of Marketing Research, 49(2), 192-205. https://doi.org/10.1509/jmr.10.0353
  4. Bessi, A., Zollo, F., Del Vicario, M., Puliga, M., Scala, A., Caldarelli, G., Uzzi, B., and Quattrociocchi, W. (2016). Users polarization on Facebook and Youtube. PLoS ONE, 11(8), e0159641.
  5. Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3, 993-1022.
  6. Bucklin, R. E., and Sismeiro, C. (2003). A model of web site browsing behavior estimated on clickstream data. Journal of Marketing Research, 40(3), 249-267. https://doi.org/10.1509/jmkr.40.3.249.19241
  7. Buschken, J., and Allenby, G. M. (2016). Sentence-based text analysis for customer reviews. Marketing Science, 35(6), 953-975. https://doi.org/10.1287/mksc.2016.0993
  8. Chae, I. Y., Schweidel, D. A., Evgeniou, T., and Padmanabhan, V. (2017). Analyzing content consumption in a hybrid content environment. Working Paper.
  9. Cherubini, F., and Nielsen, R. K. (2016). Editorial analytics: How news media are developing and using audience data and metrics. Oxford: Reuters Institute for the Study of Journalism.
  10. Chiou, L., and Tucker, C. (2013). Paywalls and the demand for news. Information Economics and Policy, 25(2), 61-69. https://doi.org/10.1016/j.infoecopol.2013.03.001
  11. Csikszentmihalyi, M. (1997). Finding flow: The psychology of engagement with everyday life (1st ed.). New York, NY: Basic Books.
  12. Datta, H., Knox, G., and Bronnenberg, B. J. (2017). Changing their tune: How consumers' adoption of online streaming affects music consumption and discovery. Marketing Science, 37(1), 1-175.
  13. Del Vicario, M., Bessi, A., Zollo, F., Petroni, F., Scala, A., Caldarelli, G., Stanley, H. E., and Quattrociocchi, W. (2016). The spreading of misinformation online. Proceedings of the National Academy of Sciences, 113(3), 554-559.
  14. Di Muro, F., and Murray, K. B. (2012). An arousal regulation explanation of mood effects on consumer choice. Journal of Consumer Research, 39(3), 574-584. https://doi.org/10.1086/664040
  15. Fader, P. S., and Hardie, B. G. S. (1996). Modeling consumer choice among SKUs. Journal of Marketing Research, 33(4), 442-452.
  16. Fader, P. S., and Lattin, J. M. (1993). Accounting for heterogeneity and nonstationarity in a cross-sectional model of consumer purchase behavior. Marketing Science, 12(3), 304-317. https://doi.org/10.1287/mksc.12.3.304
  17. Farquhar, P. H., and Rao, V. R. (1976). A balance model for evaluating subsets of multiattributed items. Management Science, 22(5), 528-539. https://doi.org/10.1287/mnsc.22.5.528
  18. Gilbride, T. J., Allenby, G. M., and Brazell, J. D. (2006). Models for heterogeneous variable selection. Journal of Marketing Research, 43(3), 420-430. https://doi.org/10.1509/jmkr.43.3.420
  19. Gilbride, T. J., and Allenby, G. M. (2004). A choice model with conjunctive, disjunctive, and compensatory screening rules. Marketing Science, 23(3), 391-406. https://doi.org/10.1287/mksc.1030.0032
  20. Godes, D., and Silva, J. C. (2012). Sequential and temporal dynamics of online opinion. Marketing Science, 31(3), 448-473.
  21. Goldenberg, J. L., Pyszczynski, T., Johnson, K. D., Greenberg, J., and Solomon, S. (1999). The appeal of tragedy: A terror management perspective. Media Psychology, 1(4), 313-329.
  22. Grewal, L., and Stephen, A. T. (2019). In mobile we trust: The effects of mobile versus nonmobile reviews on consumer purchase intentions. Journal of Marketing Research, 56(5), 791-808. https://doi.org/10.1177/0022243719834514
  23. Guadagni, P. M., and Little, J. D. C. (1983). A logit model of brand choice calibrated on scanner data. Marketing Science, 2(3), 203-238. https://doi.org/10.1287/mksc.2.3.203
  24. Heckman, J. J. (1991). Identifying the hand of past: Distinguishing state dependence from heterogeneity. The American Economic Review, 81(2), 75-79.
  25. Hoffman, D. L., and Novak, T. P. (2009). Flow online: Lessons learned and future prospects. Journal of Interactive Marketing, 23(1), 23-34. https://doi.org/10.1016/j.intmar.2008.10.003
  26. Hoffman, D. L., and Novakm, T. P. (1996). Marketing in hypermedia computer-mediated environments: Conceptual foundations. Journal of Marketing, 60(3), 50-68. https://doi.org/10.1177/002224299606000304
  27. Huang, M. H. (2003). Designing website attributes to induce experiential encounters. Computers in Human Behavior, 19(4), 425-442. https://doi.org/10.1016/S0747-5632(02)00080-8
  28. Kahn, B. E., Kalwani, M. U., and Morrison, D. G. (1986). Measuring variety-seeking and reinforcement behaviors using panel data. Journal of Marketing Research, 23(2), 89-100. https://doi.org/10.1177/002224378602300201
  29. Keane, M. P. (1997). Modeling heterogeneity and state dependence in consumer choice behavior. Journal of Business & Economic Statistics, 15(3), 310-327. https://doi.org/10.1080/07350015.1997.10524709
  30. Kim, J. H., Allenby, G. M., and Rossi, P. E. (2007). Product attributes and models of multiple discreteness. Journal of Econometrics, 138(1), 208-230. https://doi.org/10.1016/j.jeconom.2006.05.020
  31. Kumar, V., Anand, B., Gupta, S., and Oberholzer-Gee, F. (2012). The New York Times paywall. Harvard Business School Case 512-077, February 2012.
  32. Lattin, J. M. (1987). A model of balanced choice behavior. Marketing Science, 6(1), 48-65. https://doi.org/10.1287/mksc.6.1.48
  33. Li, S., Sun, B., and Wilcox, R. T. (2005). Cross-selling sequentially ordered products: An application to consumer banking services. Journal of Marketing Research, 42(2), 233-239.
  34. Mares, M. Lo., and Cantor, J. (1992). Elderly viewers' responses to televised portrayals of old age. Communication Research, 19(4), 459-478. https://doi.org/10.1177/009365092019004004
  35. McAlister, L. (1982). A dynamic attribute satiation model of variety-seeking behavior. Journal of Consumer Research, 9(2), 141-150. https://doi.org/10.1086/208907
  36. Meloy, M. G. (2000). Mood-driven distortion of product information. Journal of Consumer Research, 27(3), 345-359. https://doi.org/10.1086/317589
  37. Mitchell, A., Holcomb, J., and Weisel, R. (2016). State of the news media 2016. Available at http://www.journalism.org/2016/06/15/state-of-the-news-media-2016/
  38. Moe, W. W. (2003). Buying, searching, or browsing: Differentiating between online shoppers using in-store navigational clickstream. Journal of Consumer Psychology, 13(1-2), 29-39. https://doi.org/10.1207/153276603768344762
  39. Moe, W. W., and Fader, P. S. (2004). Dynamic conversion behavior at e-commerce sites. Management Science, 50(3), 326-335.
  40. Moe, W. W., and Schweidel, D. A. (2012). Online product opinions: Incidence, evaluation, and evolution. Marketing Science, 31(3), 372-386. https://doi.org/10.1287/mksc.1110.0662
  41. Montgomery, A. L., Li, S., Srinivasan, K., and Liechty, J. C. (2004). Modeling online browsing and path analysis using clickstream data. Marketing Science, 23(4), 579-595. https://doi.org/10.1287/mksc.1040.0073
  42. Mullainathan, S., and Shleifer, A. (2005). The market for news. The American Economic Review, 95(4), 1031-1053. https://doi.org/10.1257/0002828054825619
  43. Newton, M. A., and Raftery, A. E. (1994). Approximate bayesian inference with the weighted likelihood bootstrap. Journal of the Royal Statistical Society. Series B (Methodological), 56(1), 3-48. https://doi.org/10.1111/j.2517-6161.1994.tb01956.x
  44. Novak, T. P., Hoffman, D. L., and Duhachek, A. (2003). The influence of goal-directed and experiential activities on online flow experiences. Journal of Consumer Psychology, 13(1-2), 3-16. https://doi.org/10.1207/153276603768344744
  45. Park, C. H., and Park, Y. H. (2016). Investigating purchase conversion by uncovering online visit patterns. Marketing Science, 35(6), 894-914. https://doi.org/10.1287/mksc.2016.0990
  46. Payne, A., and Frow, P. (2005). A strategic framework for customer relationship management. Journal of Marketing, 69(4), 167-176. https://doi.org/10.1509/jmkg.2005.69.4.167
  47. Roos, J. M. T., Mela, C. F., and Shachar, R. (2015). The effect of links and excerpts on internet news consumption. Working Paper.
  48. Roy, R., Chintagunta, P. K., and Haldar, S. (1996). A framework for investigating habiits, "the hand of the past," and heterogeneity in dynamic brand choice. Marketing Science, 15(3), 280-299. https://doi.org/10.1287/mksc.15.3.280
  49. Salton, G. (1971). The SMART retrieval system-experiments in automatic document processing. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.
  50. Schmidt, A. L., Zollo, F., Del Vicario, M., Bessi, A., Scala, A., Caldarelli, G., Stanley, H. E., and Quattrociocchi, W. (2017). Anatomy of news consumption on Facebook. Proceedings of the National Academy of Sciences, 114(12), 3035-3039. https://doi.org/10.1073/pnas.1617052114
  51. Schweidel, D. A., and Moe, W. W. (2016). Binge watching and advertising. Journal of Marketing, 80(5), 1-19. https://doi.org/10.1509/jm.15.0258
  52. Schweidel, D. A., Bradlow, E. T., and Fader, P. S. (2011). Portfolio dynamics for customers of a multiservice provider. Management Science, 57(3), 471-486. https://doi.org/10.1287/mnsc.1100.1284
  53. Simonov, A., and Rao, J. (2017). Demand for (un)biased news: government control in online news markets. Working Paper.
  54. Smith, G. (2017). Trump Bump for president's media archenemies eludes local papers. Bloomberg, Available at https://www.bloomberg.com/news/articles/2017-07-10/trump-bump-for-president-s-media-archenemies-eludes-local-papers
  55. Song, Y., Sahoo, N., and Ofek, E. (2016). When diversity becomes relevant-a multi-category utility model of consumer response to content recommendations. Working Paper.
  56. The New York Times. (2017). The New York Times company reports 2017 second-quarter results. http://investors.nytco.com/press/press-releases/press-release-details/2017/The-New-York-Times-Company-Reports-2017-Second-Quarter-Results/default.aspx (Accessed on July 27 2021).
  57. Verhoef, P. C. (2003). Understanding the effect of customer relationship management efforts on customer retention and customer share development. Journal of Marketing, 67(4), 30-45. https://doi.org/10.1509/jmkg.67.4.30.18685
  58. Xiang, Y., and Sarvary, M. (2007). News consumption and media bias. Marketing Science, 26(5), 611-628. https://doi.org/10.1287/mksc.1070.0279
  59. Xiang, Y., and Soberman, D. (2014). Consumer favorites and the design of news. Management Science, 60(1), 188-205.
  60. Yildirim, P., Gal-Or, E., and Geylani, T. (2013). User-generated content and bias in news media. Management Science, 59(12), 2655-2666. https://doi.org/10.1287/mnsc.2013.1746
  61. Zhang, Y., Bradlow, E. T., and Small, D. S. (2015). Predicting customer value using clumpiness: From RFM to RFMC. Marketing Science, 34(2), 195-208. https://doi.org/10.1287/mksc.2014.0873
  62. Zollo, F., Novak, P. K., Del Vicario, M., Bessi, A., Mozetic, I., Scala, A., Caldarelli, G., and Quattrociocchi, W. (2015). Emotional dynamics in the age of misinformation. PloS ONE, 10(9), e0138740.