DOI QR코드

DOI QR Code

Exploring the Determinants of Users' Continuance Intention to Use Mobile Banking Services in Kuwait: Extending the Expectation-Confirmation Model

  • Ahmad A. Rabaa'i (NJCU School of Business New Jersey City University) ;
  • Shereef Abu ALMaati (American University of Kuwait)
  • Received : 2021.02.13
  • Accepted : 2021.03.31
  • Published : 2021.06.30

Abstract

While a great body of information systems (IS) literature has discussed mobile banking (m-banking) services, most of these studies have focused on the adoption or acceptance phases of this technology; with little attention was given to users' intension to continue using such technology. This paper aims at investigating the most important factors that predict users' continuous intension to use m-banking services in the post-adoption phase. This paper presents a conceptualization and validation of an extended expectation-confirmation model (ECM). A total of 303 Kuwaiti users of m-banking services participated in this study. Partial least squares (PLS) of structure equation modelling (SEM) technique was used to analyze the data. The results mainly showed that users' continuous intension to use m-banking services is significantly influenced by perceived trust, satisfaction, self-efficacy, performance expectancy and effort expectancy. Theoretical and practical contributions as well as the research limitations and future directions are discussed.

Keywords

References

  1. Abbas, S. K., Hassan, H. A., Asif, J., Junaid, H. M., and Zainab, F. (2018). What are the key determinants of mobile banking Adoption in Pakistan? International Journal of Scientific & Engineering Research, 9(2), 841-848.
  2. Afshan, S., and Sharif, A. (2016). Acceptance of mobile banking framework in Pakistan. Telematics and Informatics, 33(2), 370-387. doi: 10.1016/j.tele.2015.09.005
  3. Agarwal, R., Sambamurthy, V., and Stair, R. M. (2000). Research report: The evolving relationship between general and specific computer self-efficacy-an empirical assessment. Information Systems Research, 11(4), 418-430. doi: 10.1287/isre.11.4.418.11876
  4. Aguinis, H., Beaty, J. C., Boik, R. J., and Pierce, C. A. (2005). Effect size and power in assessing moderating effects of categorical variables using multiple regression: A 30-year review. Journal of Applied Psychology, 90(1), 94-107. doi: 10.1037/0021-9010.90.1.94
  5. Akturan, U., and Tezcan, N. (2012). Mobile banking adoption of the youth market: Perceptions and intentions. Marketing Intelligence & Planning, 30(4), 444-459. doi: 10.1108/02634501211231928
  6. Alalwan, A. A. (2020). Mobile food ordering apps: An empirical study of the factors affecting customer e-satisfaction and continued intention to reuse. International Journal of Information Management, 50, 28-44. doi: 10.1016/j.ijinfomgt.2019.04.008
  7. Alalwan, A. A., Dwivedi, Y. K., and Rana, N. P. (2017). Factors influencing adoption of mobile banking by Jordanian bank customers: Extending UTAUT2 with trust. International Journal of Information Management, 37(3), 99-110. doi: 10.1016/j.ijinfomgt.2017.01.002
  8. Alalwan, A. A., Dwivedi, Y. K., Rana, N. P. P., and Williams, M. D. (2016). Consumer adoption of mobile banking in Jordan: Examining the role of usefulness, ease of use, perceived risk and self-efficacy. Journal of Enterprise Information Management, 29(1), 118-139. doi: 10.1108/JEIM-04-2015-0035
  9. Alalwan, A. A., Dwivedi, Y. K., Rana, N. P., and Algharabat, R. (2018). Examining factors influencing Jordanian customers' intentions and adoption of internet banking: Extending UTAUT2 with risk. Journal of Retailing and Consumer Services, 40, 125-138. doi: 10.1016/j.jretconser.2017.08.026
  10. Albashrawi, M., and Motiwalla, L. (2019). Privacy and personalization in continued usage intention of mobile banking: An integrative perspective. Information Systems Frontiers, 21(5), 1031-1043. doi: 10.1007/s10796-017-9814-7
  11. Al-Emran, M., Arpaci, I., and Salloum, S. A. (2020). An empirical examination of continuous intention to use m-learning: An integrated model. Education and Information Technologies. doi: 10.1007/s10639-019-10094-2
  12. Alkhaldi, A. N. (2016). Adoption of mobile banking in Saudi Arabia: An empirical evaluation study. International Journal of Managing Information Technology, 8(2), 1-14. https://doi.org/10.5121/ijmit.2016.8201
  13. Alkhaldi, A. N., and Kharma, Q. M. (2019). Customer's intention to adopt mobile banking services: The moderating influence of demographic factors. International Journal of Innovation and Technology Management (IJITM), 16(5), 1-26.
  14. Alraimi, K. M., Zo, H., and Ciganek, A. P. (2015). Understanding the MOOCs continuance: The role of openness and reputation. Computers & Education, 80, 28-38. doi: 10.1016/j.compedu.2014.08.006
  15. Alsheikh, L., and Bojei, J. (2014). Determinants affecting customer's intention to adopt mobile banking in Saudi Arabia. International Arab Journal of E-Technology, 3(4), 210-219.
  16. Alshurideh, M., Al Kurdi, B., and Salloum, S. A. (2020). Examining the main mobile learning system drivers' effects: A mix empirical examination of both the Expectation-Confirmation Model (ECM) and the Technology Acceptance Model (TAM). In A. E. Hassanien, K. Shaalan and M. F. Tolba (Eds.), Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2019 (pp. 406-417). Springer International Publishing. doi: 10.1007/978-3-030-31129-2_37
  17. Alwahaishi, S., and Snasel, V. (2013). Acceptance and use of information and communications technology: A UTAUT and flow based theoretical model. Journal of Technology Management & Innovation, 8(2), 61-73.
  18. Arab Times. (2017). NBK at forefront of tech adaption. http://www.arabtimesonline.com/news/category/kuwait/
  19. Arab times. (2019). Kuwait Vision 2035 is a promising future strategy. Retrieved from http://www.arabtimesonline.com/news/kuwait-vision-2035-is-a-promising-future-strategy/
  20. Arpaci, I. (2016). Understanding and predicting students' intention to use mobile cloud storage services. Computers in Human Behavior, 58, 150-157. doi: 10.1016/j.chb.2015.12.067
  21. Asnakew, Z. S. (2020). Customers' continuance intention to use mobile banking: Development and testing of an integrated model. The Review of Socionetwork Strategies, 14(1), 123-146. doi: 10.1007/s12626-020-00060-7
  22. Avornyo, P., Fang, J., Odai, R. O., Vondee, J. B., and Nartey, M. N. (2019). Factors affecting continuous usage intention of mobile banking in Tema and Kumasi. International Journal of Business and Social Science, 10(3).
  23. Aziz, N. (2015). Smart devices as u-learning tools: Key factors influencing users' intention. Master's Thesis, Stockholm University.
  24. Baabdullah, A. M., Alalwan, A. A., Rana, N. P., Kizgin, H., and Patil, P. (2019). Consumer use of Mobile Banking (m-Banking) in Saudi Arabia: Towards an integrated model. International Journal of Information Management, 44, 38-52. doi: 10.1016/j.ijinfomgt.2018.09.002
  25. Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191-215. doi: 10.1037/0033-295X.84.2.191
  26. Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Prentice Hall.
  27. Bandura, A. (1994). Self-efficacy. In V. S. Ramachaudran (Ed.), Encyclopedia of human behavior (Vol. 4, pp. 71-81). Academic Press.
  28. Bhattacherjee, A. (2001a). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 25(3), 351-370. doi: 10.2307/3250921
  29. Bhattacherjee, A. (2001b). An empirical analysis of the antecedents of electronic commerce service continuance. Decision Support Systems, 32(2), 201-214. doi: 10.1016/S0167-9236(01)00111-7
  30. Bhattacherjee, A., and Premkumar, G. (2004). Understanding changes in belief and attitude toward information technology usage: A theoretical model and longitudinal test. MIS Quarterly, 28(2), 229-254. doi: 10.2307/25148634
  31. Bhattacherjee, A., Perols, J., and Sanford, C. (2008). Information technology continuance: A theoretic extension and empirical test. Journal of Computer Information Systems, 49(1), 17-26. doi: 10.1080/08874417.2008.11645302
  32. Boonsiritomachai, W., and Pitchayadejanant, K. (2017). Determinants affecting mobile banking adoption by generation Y based on the unified theory of acceptance and use of technology model modified by the technology acceptance model concept. Kasetsart Journal of Social Sciences, S2452315117301601. doi: 10.1016/j.kjss.2017.10.005
  33. Casalo, L. V., Flavian, C., and Guinaliu, M. (2007). The role of security, privacy, usability and reputation in the development of online banking. Online Information Review, 31(5), 583-603. doi: 10.1108/14684520710832315
  34. Centeno, C. (2004). Adoption of internet services in the acceding and candidate countries, lessons from the internet banking case. Telematics and Informatics, 21(4), 293-315. doi: 10.1016/j.tele.2004.02.001
  35. Central Bank of Kuwait. (2019). Shaping the future. Retrieved from https://www.cbk.gov.kw
  36. Chan, S., and Lu, M. (2004). Understanding internet banking adoption and use behavior: A Hong Kong perspective. Journal of Global Information Management, 12(3), 21-43. doi: 10.4018/jgim.2004070102
  37. Chang, C. W. (2016). Why do people continue using Facebook: An empirical study from the perspectives of technology adoption and social contract. Doctoral Dissertation, University of Southern Mississippi. Retrieved from https://aquila.usm.edu/dissertations/332
  38. Changchit, C., Klaus, T., Lonkani, R., and Sampet, J. (2019). A cultural comparative study of mobile banking adoption factors. Journal of Computer Information Systems, 60(5), 1-11. doi: 10.1080/08874417.2018.1541724
  39. Chawla, D., and Joshi, H. (2018). The moderating effect of demographic variables on mobile banking adoption: An empirical investigation. Global Business Review, 19(3_suppl), S90-S113. doi: 10.1177/0972150918757883
  40. Chen, S. C. (2012). To use or not to use: Understanding the factors affecting continuance intention of mobile banking. International Journal of Mobile Communications, 10(5), 490. doi: 10.1504/IJMC.2012.048883
  41. Chen, S. C., Liu, M. L., and Lin, C. P. (2013). Integrating technology readiness into the expectation-confirmation model: An empirical study of mobile services. Cyberpsychology, Behavior, and Social Networking, 16(8), 604-612. doi: 10.1089/ cyber.2012.0606
  42. Cheng, P., OuYang, Z., and Liu, Y. (2019). Understanding bike sharing use over time by employing extended technology continuance theory. Transportation Research Part A: Policy and Practice, 124, 433-443. doi: 10.1016/j.tra.2019.04.013
  43. Cheng, Y. M. (2014a). Extending the expectationconfirmation model with quality and flow to explore nurses' continued blended e-learning intention. Information Technology & People, 27(3), 230-258. doi: 10.1108/ITP-01-2013-0024
  44. Cheng, Y. M. (2014b). Why do users intend to continue using the digital library? An integrated perspective. Aslib Journal of Information Management, 66(6), 640-662. doi: 10.1108/AJIM-05-2013-0042
  45. Cheng, Y., Sharma, S., Sharma, P., and Kulathunga, K. (2020). Role of personalization in continuous use intention of mobile news apps in India: Extending the UTAUT2 model. Information, 11(1), 33. doi: 10.3390/info11010033
  46. Cheung, C. M. K., Lee, M. K. O., and Lee, Z. W. Y. (2013). Understanding the continuance intention of knowledge sharing in online communities of practice through the post-knowledge-sharing evaluation processes: Understanding the continuance intention of knowledge sharing in online communities of practice through the postknowledge-sharing evaluation processes. Journal of the American Society for Information Science and Technology, 64(7), 1357-1374. doi: 10.1002/asi.22854
  47. Chin, W. W. (2010). Bootstrap cross-validation indices for PLS path model assessment. In V. Esposito Vinzi, W. W. Chin, J. Henseler and H. Wang (Eds.), Handbook of partial least squares: Concepts, methods and applications (pp. 83-97). Springer. doi: 10.1007/978-3-540-32827-8_4
  48. Chiu, Y. L., and Tsai, C. C. (2014). The roles of social factor and internet self-efficacy in nurses' web-based continuing learning. Nurse Education Today, 34(3), 446-450. doi: 10.1016/j.nedt.2013.04.013
  49. Choi, K., Wang, Y., and Sparks, B. (2019). Travel app users' continued use intentions: It's a matter of value and trust. Journal of Travel & Tourism Marketing, 36(1), 131-143. doi: 10.1080/10548408.2018.1505580
  50. Chong, A. Y. L. (2013). A two-staged SEM-neural network approach for understanding and predicting the determinants of m-commerce adoption. Expert Systems with Applications, 40(4), 1240-1247. doi:10.1016/j.eswa.2012.08.067
  51. Choudrie, J., Junior, C. O., McKenna, B., and Richter, S. (2018). Understanding and conceptualising the adoption, use and diffusion of mobile banking in older adults: A research agenda and conceptual framework. Journal of Business Research, 88, 449-465. doi: 10.1016/j.jbusres.2017.11.029
  52. Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Erlbaum.
  53. Cui, F., Lin, D., and Qu, H. (2018). The impact of perceived security and consumer innovativeness on e-loyalty in online travel shopping. Journal of Travel & Tourism Marketing, 35(6), 819-834. doi: 10.1080/10548408.2017.1422452
  54. Dai, H. M., Teo, T., Rappa, N. A., and Huang, F. (2020). Explaining Chinese university students' continuance learning intention in the MOOC setting: A modified expectation confirmation model perspective. Computers & Education, 150, 103850. doi: 10.1016/j.compedu.2020.103850
  55. Damghanian, H., Zarei, A., and Siahsarani Kojuri, M. A. (2016). Impact of perceived security on trust, perceived risk, and acceptance of online banking in Iran. Journal of Internet Commerce, 15(3), 214-238. doi: 10.1080/15332861.2016.1191052
  56. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. doi: 10.2307/249008
  57. Ding, Y. (2019). Looking forward: The role of hope in information system continuance. Computers in Human Behavior, 91, 127-137. doi: 10.1016/j.chb.2018.09.002
  58. Dixit, N., and Datta, S. (2010). Acceptance of e-banking among adult customers: An empirical investigation in India. The Journal of Internet Banking and Commerce, 15(2), 1-17.
  59. Dwivedi, Y. K., Rana, N. P., Janssen, M., Lal, B., Williams, M. D., and Clement, M. (2017). An empirical validation of a unified model of electronic government adoption (UMEGA). Government Information Quarterly, 34(2), 211-230. doi: 10.1016/j.giq.2017.03.001
  60. Farah, M. F., Hasni, M. J. S., and Abbas, A. K. (2018). Mobile-banking adoption: Empirical evidence from the banking sector in Pakistan. International Journal of Bank Marketing, 36(7), 1386-1413. doi: 10.1108/IJBM-10-2017-0215
  61. Faria, G. (2012). Mobile banking adoption: A novel model in the Portuguese context. Universidade Nova de Lisboa.
  62. Fornell, C., and Cha, J. (1994). Partial least squares. In R. P. Bagozzi (Ed.), Advanced methods of marketing research (pp. 52-78.). Blackwell, Cambridge. Retrieved from https://ci.nii.ac.jp/naid/10017428683/
  63. Fornell, C., and Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Journal of Marketing Research, 18(3), 382-388. doi: 10.1177/002224378101800313
  64. Foroughi, B., Iranmanesh, M., and Hyun, S. S. (2019). Understanding the determinants of mobile banking continuance usage intention. Journal of Enterprise Information Management, 32(6), 1015-1033. doi: 10.1108/JEIM-10-2018-0237
  65. Fu, X., Zhang, J., and Chan, F. T. S. (2018). Determinants of loyalty to public transit: A model integrating satisfaction-loyalty theory and expectationconfirmation theory. Transportation Research Part A: Policy and Practice, 113, 476-490. doi: 10.1016/j.tra.2018.05.012
  66. Gan, C., and Xiao, D. (2015). An empirical study on continuance intention of mobile reading. Chinese Journal of Library and Information Science, 8(2), 69-82.
  67. Gilani, M. S., Iranmanesh, M., Nikbin, D., and Zailani, S. (2017). EMR continuance usage intention of healthcare professionals. Informatics for Health and Social Care, 42(2), 153-165. doi: 10.3109/17538157.2016.1160245
  68. Global Finance. (2020). Kuwait startups: Seeding tomorrow's giants. Retrieved from https://www.gfmag.com/magazine/january-2020/kuwait-startups-seeding-tomorrows-giants
  69. Gold, A. H., Malhotra, A., and Segars, A. H. (2001). Knowledge management: An organizational capabilities perspective. Journal of Management Information Systems, 18(1), 185-214. doi: 10.1080/07421222.2001.11045669
  70. Grewal, R., Cote, J. A., and Baumgartner, H. (2004). Multicollinearity and measurement error in structural equation models: Implications for theory testing. Marketing Science, 23(4), 519-529. doi: 10.1287/mksc.1040.0070
  71. Gu, J. C., Lee, S. C., and Suh, Y. H. (2009). Determinants of behavioral intention to mobile banking. Expert Systems with Applications, 36(9), 11605-11616. doi: 10.1016/j.eswa.2009.03.024
  72. Gupta, A., Yousaf, A., and Mishra, A. (2020). How pre-adoption expectancies shape post-adoption continuance intentions: An extended expectationconfirmation model. International Journal of Information Management, 52, 102094. doi: 10.1016/j.ijinfomgt.2020.102094
  73. Haider, M. J., Changchun, G., Akram, T., and Hussain, S. T. (2018). Does gender differences play any role in intention to adopt Islamic mobile banking in Pakistan?: An empirical study. Journal of Islamic Marketing, 9(2), 439-460. doi: 10.1108/JIMA-11-2016-0082
  74. Hair, J. F., Hollingsworth, C., Randolph, A., and Chong, A. (2017a). An updated and expanded assessment of PLS-SEM in information systems research. Industrial Management & Data Systems, 117(3), 442-458. doi: 10.1108/IMDS-04-2016-0130
  75. Hair, J. F., Hult, T., Ringle, C., and Sarstedt, M. (2017b). A primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). SAGE Publications.
  76. Hair, J. F., Sarstedt, M., Hopkins, L., and G. Kuppelwieser, V. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European Business Review, 26(2), 106-121. doi: 10.1108/EBR-10-2013-0128
  77. Hair, J. F., Sarstedt, M., Pieper, T. M., and Ringle, C. M. (2012). The use of partial least squares structural equation modeling in strategic management research: A review of past practices and recommendations for future applications. Long Range Planning, 45(5), 320-340. doi: 10.1016/j.lrp.2012.09.008
  78. Hair, J. F., Sarstedt, M., Ringle, C. M., and Mena, J. A. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40(3), 414-433. doi: 10.1007/s11747-011-0261-6
  79. Hajiheydari, N., and Ashkani, M. (2018). Mobile application user behavior in the developing countries: A survey in Iran. Information Systems, 77, 22-33. doi: 10.1016/j.is.2018.05.004
  80. Hanafizadeh, P., Behboudi, M., Abedini Koshksaray, A., and Jalilvand Shirkhani Tabar, M. (2014). Mobile-banking adoption by Iranian bank clients. Telematics and Informatics, 31(1), 62-78. doi: 10.1016/j.tele.2012.11.001
  81. Henseler, J., Ringle, C. M., and Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135. doi: 10.1007/s11747-014-0403-8
  82. Henseler, J., Ringle, C. M., and Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. In R. R. Sinkovics and P. N. Ghauri (Eds.), New challenges to international marketing (Vol. 20, pp. 277-319). Emerald Group Publishing Limited. doi: 10.1108/S1474-7979(2009)0000020014
  83. Hew, J. J., Lee, V. H., Ooi, K. B., and Wei, J. (2015). What catalyses mobile apps usage intention: An empirical analysis. Industrial Management & Data Systems, 115(7), 1269-1291. doi: 10.1108/IMDS-01-2015-0028
  84. Hock, C., Ringle, C. M., and Sarstedt, M. (2010). Management of multi-purpose stadiums: Importance and performance measurement of service interfaces. International Journal of Services Technology and Management, 14(2/3), 188. doi: 10.1504/IJSTM.2010.034327
  85. Hoehle, H., Scornavacca, E., and Huff, S. (2012). Three decades of research on consumer adoption and utilization of electronic banking channels: A literature analysis. Decision Support Systems, 54(1), 122-132. doi: 10.1016/j.dss.2012.04.010
  86. Hong, S., Thong, J. Y. L., and Tam, K. Y. (2006). Understanding continued information technology usage behavior: A comparison of three models in the context of mobile internet. Decision Support Systems, 42(3), 1819-1834. doi: 10.1016/j.dss.2006.03.009
  87. Hong, W., and Thong, J. Y. L. (2013). Internet privacy concerns: An integrated conceptualization and four empirical studies. MIS Quarterly, 37(1), 275-298. https://doi.org/10.25300/MISQ/2013/37.1.12
  88. Hsiao, C. H., and Tang, K. Y. (2015). Investigating factors affecting the acceptance of self-service technology in libraries: The moderating effect of gender. Library Hi Tech, 33(1), 114-133. doi: 10.1108/LHT-09-2014-0087
  89. Hsiao, C. H., Chang, J. J., and Tang, K. Y. (2016). Exploring the influential factors in continuance usage of mobile social Apps: Satisfaction, habit, and customer value perspectives. Telematics and Informatics, 33(2), 342-355. doi: 10.1016/j.tele.2015.08.014
  90. Hsiao, W. H., and Chang, T. S. (2014). Understanding consumers' continuance intention towards mobile advertising: A theoretical framework and empirical study. Behaviour & Information Technology, 33(7), 730-742. doi: 10.1080/0144929X.2013.789081
  91. Hsu, C. L., Yu, C. C., and Wu, C. C. (2014). Exploring the continuance intention of social networking websites: An empirical research. Information Systems and E-Business Management, 12(2), 139-163. doi: 10.1007/s10257-013-0214-3
  92. Hsu, M. H., and Chiu, C. M. (2004). Internet self-efficacy and electronic service acceptance. Decision Support Systems, 38(3), 369-381. doi: 10.1016/j.dss.2003.08.001
  93. Hu, J., and Zhang, Y. (2016). Chinese students' behavior intention to use mobile library apps and effects of education level and discipline. Library Hi Tech, 34(4), 639-656. doi: 10.1108/LHT-06-2016-0061
  94. Huang, Y. M. (2016). The factors that predispose students to continuously use cloud services: Social and technological perspectives. Computers & Education, 97, 86-96. doi: 10.1016/j.compedu.2016.02.016
  95. Huang, Y. M. (2019). Examining students' continued use of desktop services: Perspectives from expectation-confirmation and social influence. Computers in Human Behavior, 96, 23-31. doi: 10.1016/j.chb.2019.02.010
  96. Hubert, M., Blut, M., Brock, C., Backhaus, C., and Eberhardt, T. (2017). Acceptance of smartphone-based mobile shopping: Mobile benefits, customer characteristics, perceived risks, and the impact of application context: Acceptance of smartphone-based mobile shopping. Psychology & Marketing, 34(2), 175-194. doi: 10.1002/mar.20982
  97. Huseynov, F., and Ozkan Yildirim, S. (2019). Online consumer typologies and their shopping behaviors in B2C e-commerce platforms. SAGE Open, 9(2), 215824401985463. doi: 10.1177/2158244019854639
  98. Hwang, J., Han, H., and Choo, S. (2016). An investigation of the formation of rapport between players and dealers in the casino industry. Journal of Destination Marketing & Management, 5(2), 97-106. doi: 10.1016/j.jdmm.2015.11.004
  99. Iranmanesh, M., Zailani, S., and Nikbin, D. (2017). RFID continuance usage intention in health care industry. Quality Management in Health Care, 26(2), 116-123. doi: 10.1097/QMH.0000000000000134
  100. Jaradat, M. I. R., and Al Rababaa, M. S. (2013). Assessing key factor that influence on the acceptance of mobile commerce based on modified UTAUT. International Journal of Business and Management, 8(23), 102. doi: 10.5539/ijbm.v8n23p102
  101. Johnson, V., Woolridge, R., Wang, W., and Bell, J. (2020). The impact of perceived privacy, accuracy and security on the adoption of mobile self-checkout systems. Journal of Innovation Economics & Management, 1(31), 221-247.
  102. Joo, Y. J., Kim, N., and Kim, N. H. (2016). Factors predicting online university students' use of a mobile learning management system (m-LMS). Educational Technology Research and Development, 64(4), 611-630. doi: 10.1007/s11423-016-9436-7
  103. Joo, Y. J., Park, S., and Shin, E. K. (2017). Students' expectation, satisfaction, and continuance intention to use digital textbooks. Computers in Human Behavior, 69, 83-90. doi: 10.1016/j.chb.2016.12.025
  104. Joo, Y. J., So, H. J., and Kim, N. H. (2018). Examination of relationships among students' self-determination, technology acceptance, satisfaction, and continuance intention to use K-MOOCs. Computers & Education, 122, 260-272. doi: 10.1016/j.compedu.2018.01.003
  105. Josang, A., Keser, C., and Dimitrakos, T. (2005). Can we manage trust? In P. Herrmann, V. Issarny and S. Shiu (Eds.), Trust management (Vol. 3477, pp. 93-107). Springer, Berlin Heidelberg. doi: 10.1007/11429760_7
  106. Juniper Research. (2019). Mobile banking users. https://www.juniperresearch.com/press-release/digital-banking-pr1
  107. Kapoor, K. K., Dwivedi, Y. K., and Williams, M. D. (2015). Examining the role of three sets of innovation attributes for determining adoption of the interbank mobile payment service. Information Systems Frontiers, 17(5), 1039-1056. doi: 10.1007/s10796-014-9484-7
  108. Kassim, N. M. (2017). Effect of perceived security and perceived privacy towards trust and the influence on internet banking usage among Malaysians. International Academic Journal of Social Sciences, 4(2), 26-36.
  109. Kenny, D. (2018). Moderator variables. http://davidakenny.net/cm/moderation.htm
  110. Kim, B. (2010). An empirical investigation of mobile data service continuance: Incorporating the theory of planned behavior into the expectationconfirmation model. Expert Systems with Applications, 37(10), 7033-7039. doi: 10.1016/j.eswa.2010.03.015
  111. Kim, M. J., Chung, N., and Lee, C. K. (2011). The effect of perceived trust on electronic commerce: Shopping online for tourism products and services in South Korea. Tourism management, 32(2), 256-265. doi: 10.1016/j.tourman.2010.01.011
  112. Kim, S. N., Ibrahim, M. A., Razzaly, W., Ahmad, A. R., and Sirisa, N. M. X. (2017). Mobile technology for learning satisfaction among students at Malaysian Technical Universities (MTUN). Advanced Science Letters, 23(1), 223-226. doi: 10.1166/asl.2017.7140
  113. Kline, R. B. (2016). Principles and practice of structural equation modeling (4th ed.). Guilford Publications.
  114. Koenig-Lewis, N., Palmer, A., and Moll, A. (2010). Predicting young consumers' take up of mobile banking services. International Journal of Bank Marketing, 28(5), 410-432. doi: 10.1108/02652321011064917
  115. Kumar, A., Adlakaha, A., and Mukherjee, K. (2018). The effect of perceived security and grievance redressal on continuance intention to use M-wallets in a developing country. International Journal of Bank Marketing, 36(7), 1170-1189. doi: 10.1108/IJBM-04-2017-0077
  116. Kumar, G., and Ravindran, D. (2012). An empirical study on service quality perceptions and continuance intention in mobile banking context in India. Journal of Internet Banking and Commerce, 17(1), 1-22.
  117. Kuwait Foundation for the Advancement of Sciences (KFAS). (2019). FinTech: Future of financial services. Retrieved from https://www.kfas.com/media/studies
  118. Laforet, S., and Li, X. (2005). Consumers' attitudes towards online and mobile banking in China. International Journal of Bank Marketing, 23(5), 362-380. doi: 10.1108/02652320510629250
  119. Leong, L. Y., Hew, T. S., Ooi, K. B., and Wei, J. (2020). Predicting mobile wallet resistance: A two-staged structural equation modeling-artificial neural network approach. International Journal of Information Management, 51, 102047. doi: 10.1016/j.ijinfomgt.2019.102047
  120. Li, J., Wang, J., Wangh, S., and Zhou, Y. (2019). Mobile payment with alipay: An application of extended technology acceptance model. IEEE Access, 7, 50380-50387. doi: 10.1109/ACCESS.2019.2902905
  121. Li, Y. M., and Yeh, Y. S. (2010). Increasing trust in mobile commerce through design aesthetics. Computers in Human Behavior, 26(4), 673-684. doi: 10.1016/j.chb.2010.01.004
  122. Liao, C., Palvia, P., and Chen, J. L. (2009). Information technology adoption behavior life cycle: Toward a technology continuance theory (tct). International Journal of Information Management, 29(4), 309-320. doi: 10.1016/j.ijinfomgt.2009.03.004
  123. Liebana-Cabanillas, F., Marinkovic, V., Ramos De Luna, I., and Kalinic, Z. (2018). Predicting the determinants of mobile payment acceptance: A hybrid SEM-neural network approach. Technological Forecasting and Social Change, 129, 117-130. doi: 10.1016/j.techfore.2017.12.015
  124. Liebana-Cabanillas, F., Munoz-Leiva, F., and Rejon-Guardia, F. (2013). The determinants of satisfaction with e-banking. Industrial Management & Data Systems, 113(5), 750-767. doi: 10.1108/02635571311324188
  125. Lim, S. H., Kim, D. J., Hur, Y., and Park, K. (2019). An empirical study of the impacts of perceived security and knowledge on continuous intention to use mobile Fintech payment services. International Journal of Human-Computer Interaction, 35(10), 886-898. doi: 10.1080/10447318.2018.1507132
  126. Lin, C. S., Wu, S., and Tsai, R. J. (2005). Integrating perceived playfulness into expectation-confirmation model for web portal context. Information & Management, 42(5), 683-693. doi: 10.1016/j.im.2004.04.003
  127. Lu, H. P., and Lee, M. R. (2012). Experience differences and continuance intention of blog sharing. Behaviour & Information Technology, 31(11), 1081-1095. doi: 10.1080/0144929X.2011.611822
  128. Lurudusamy, N., and Ramayah, T. (2016). The antecedents of broadband internet adoption and continuance usage in Malaysian household context. Journal of Theoretical and Applied Information Technology, 88(3), 476-486.
  129. Lwoga, E. T., and Komba, M. (2015). Antecedents of continued usage intentions of web-based learning management system in Tanzania. Education+Training, 57(7), 738-756. doi: 10.1108/ET-02-2014-0014
  130. Madan, K., and Yadav, R. (2016). Behavioural intention to adopt mobile wallet: A developing country perspective. Journal of Indian Business Research, 8(3), 227-244. doi: 10.1108/JIBR-10-2015-0112
  131. Maduku, D. K. (2016). Fostering m-banking continuance intention: The role of trust in banks, self-efficacy, and mobile network quality. 10th International Business Conference, 186-196.
  132. Maduku, Daniel K. (2016). The effect of institutional trust on internet banking acceptance: Perspectives of south african banking retail customers. South African Journal of Economic and Management Sciences, 19(4), 533-548. doi: 10.17159/2222-3436/2016/v19n4a5
  133. Malaquias, R. F., and Hwang, Y. (2016). An empirical study on trust in mobile banking: A developing country perspective. Computers in Human Behavior, 54, 453-461. doi: 10.1016/j.chb.2015.08.039
  134. Marinkovic, V., Dordevic, A., and Kalinic, Z. (2020). The moderating effects of gender on customer satisfaction and continuance intention in mobile commerce: A UTAUT-based perspective. Technology Analysis & Strategic Management, 32(3), 306-318. doi: 10.1080/09537325.2019.1655537
  135. Martins, C., Oliveira, T., and Popovic, A. (2014). Understanding the internet banking adoption: A unified theory of acceptance and use of technology and perceived risk application. International Journal of Information Management, 34(1), 1-13. doi: 10.1016/j.ijinfomgt.2013.06.002
  136. Masrek, M. N., and Razali, M. H. (2013). Antecedents and impacts of mobile banking transactions: A case of Malaysian consumers. 2013 International Conference on Advanced Computer Science Applications and Technologies, 401-405. doi: 10.1109/ACSAT.2013.85
  137. McLean, G., Osei-Frimpong, K., Al-Nabhani, K., and Marriott, H. (2020). Examining consumer attitudes towards retailers' m-commerce mobile applications-An initial adoption vs. continuous use perspective. Journal of Business Research, 106, 139-157. doi: 10.1016/j.jbusres.2019.08.032
  138. Merhi, M., Hone, K., and Tarhini, A. (2019). A cross-cultural study of the intention to use mobile banking between lebanese and British consumers: Extending UTUAT2 with security, privacy and trust. Technology in Society, 59, 101151. doi: 10.1016/j.techsoc.2019.101151
  139. Merikivi, J., Tuunainen, V., and Nguyen, D. (2017). What makes continued mobile gaming enjoyable? Computers in Human Behavior, 68, 411-421. doi: 10.1016/j.chb.2016.11.070
  140. Mutahar, A. M., Daud, N. M., Thurasamy, R., Isaac, O., and Abdulsalam, R. (2018). The mediating of perceived usefulness and perceived ease of use: The case of mobile banking in Yemen. International Journal of Technology Diffusion, 9(2), 21-40. doi: 10.4018/IJTD.2018040102
  141. Nascimento, B., Oliveira, T., and Tam, C. (2018). Wearable technology: What explains continuance intention in smartwatches? Journal of Retailing and Consumer Services, 43, 157-169. doi: 10.1016/j.jretconser.2018.03.017
  142. Natarajan, T., Balasubramanian, S. A., and Kasilingam, D. L. (2018). The moderating role of device type and age of users on the intention to use mobile shopping applications. Technology in Society, 53, 79-90. doi: 10.1016/j.techsoc.2018.01.003
  143. NBK Capital. (2019). Digital banking: Why embracing a meaningful digital transformation is the only option. Retrieved from https://nbkcapital.com/2019/digital-banking-embracing-meaningful-digital-transformation-option/
  144. NBK. (2018). National Bank of Kuwait 2018 annual report. Retrieved from https://www.nbk.com/nbkgroup/investor-relations/Latest-Annual-Report.html (Accessed 18 February 2020).
  145. Nunnally, C., and Bernstein, H. (1994). Psychometric theory (3rd ed.). McGraw Hill.
  146. Oertzen, A. S., and Odekerken-Schroder, G. (2019). Achieving continued usage in online banking: A post-adoption study. International Journal of Bank Marketing, 37(6), 1394-1418. doi: 10.1108/IJBM-09-2018-0239
  147. Oghuma, A. P., Chang, Y., Libaque-Saenz, C. F., Park, M. C., and Rho, J. J. (2015). Benefitconfirmation model for post-adoption behavior of mobile instant messaging applications: A comparative analysis of KakaoTalk and Joyn in Korea. Telecommunications Policy, 39(8), 658-677. doi: 10.1016/j.telpol.2015.07.009
  148. Oghuma, A. P., Libaque-Saenz, C. F., Wong, S. F., and Chang, Y. (2016). An expectationconfirmation model of continuance intention to use mobile instant messaging. Telematics and Informatics, 33(1), 34-47. doi: 10.1016/j.tele.2015.05.006
  149. Okumus, B., Ali, F., Bilgihan, A., and Ozturk, A. B. (2018). Psychological factors influencing customers' acceptance of smartphone diet apps when ordering food at restaurants. International Journal of Hospitality Management, 72, 67-77. doi: 10.1016/j.ijhm.2018.01.001
  150. Okumus, B., Bilgihan, A., and Ozturk, A. B. (2015). Factors affecting the acceptance of smartphone diet applications. Journal of Hospitality Marketing & Management, 25(6), 726-747. doi: 10.1080/19368623.2016.1082454
  151. Oliveira, T., Faria, M., Thomas, M. A., and Popovic, A. (2014). Extending the understanding of mobile banking adoption: When UTAUT meets TTF and ITM. International Journal of Information Management, 34(5), 689-703. doi: 10.1016/j.ijinfomgt.2014.06.004
  152. Oliver, R. (1997). Satisfaction: A behavioral perspective on the consumer. McGraw Hill.
  153. Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of Marketing Research, 17(4), 460-469. doi: 10.1177/002224378001700405
  154. Patel, K. J., and Patel, H. J. (2018). Adoption of internet banking services in Gujarat: An extension of TAM with perceived security and social influence. International Journal of Bank Marketing, 36(1), 147-169. doi: 10.1108/IJBM-08-2016-0104
  155. Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., and Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879-903. doi: 10.1037/0021-9010.88.5.879
  156. Poromatikul, C., De Maeyer, P., Leelapanyalert, K., and Zaby, S. (2020). Drivers of continuance intention with mobile banking apps. International Journal of Bank Marketing, 38(1), 242-262. doi: 10.1108/IJBM-08-2018-0224
  157. Premkumar, G., and Bhattacherjee, A. (2008). Explaining information technology usage: A test of competing models. Omega, 36(1), 64-75. doi: 10.1016/j.omega.2005.12.002
  158. Rabaa'i, A. A. (2012). Evaluating the success of large-scale, integrated information systems through the lens of IS-impact and IS-support. Doctoral Dissertation, Queensland University of Technology.
  159. Rabaa'i, A. A. (2016). Extending the technology acceptance model (TAM) to assess students' behavioural intentions to adopt an e-learning system: The case of moodle as a learning tool. Journal of Emerging Trends in Engineering and Applied Sciences, 7(1), 13-30.
  160. Rabaa'i, A. A. (2017a). Holistic procedures for contemporary formative construct validation using PLS: A comprehensive example. International Journal of Business Information Systems, 25(3), 279-318. https://doi.org/10.1504/IJBIS.2017.084436
  161. Rabaa'i, A. A. (2017b). The use of UTAUT to investigate the adoption of e-government in Jordan: A cultural perspective. International Journal of Business Information Systems, 24(3), 285-315. https://doi.org/10.1504/IJBIS.2017.082037
  162. Rabaa'i, A. A. (In press). An investigation into the acceptance of mobile wallets in the FinTech Era: An empirical study from Kuwait. International Journal of Business Information Systems.
  163. Rabaa'i, A. A. and Zhu, X. (In press). Understanding the determinants of wearable payment adoption: An empirical study. Interdisciplinary Journal of Information, Knowledge, and Management.
  164. Rabaa'i, A. A., Bhat, H., and Abu Al Maati, S. (2018). Theorising social networks addiction: An empirical investigation. International Journal of Social Media and Interactive Learning Environments, 6(1), 1. doi: 10.1504/IJSMILE.2018.10013518
  165. Rabaa'i, A. A., Tate, M., and Gable, G. (2015). Can't see the trees for the forest? Why IS-SERVQUAL items matter. Asia Pacific Journal of Information Systems, 25(2), 211-238. https://doi.org/10.14329/apjis.2015.25.2.211
  166. Rabaai, A. A. (2015). An empirical investigation on the adoption of e-government in developing countries: The case of Jordan. Computer and Information Science, 8(3), 83. doi: 10.5539/cis.v8n3p83
  167. Rabaai, A. A., Zogheib, B., AlShatti, A., and AlJamal, E. M. (2015). Adoption of e-government in developing countries: The case of the state of Kuwait. Journal of Global Research in Computer Science, 6(10), 6-21.
  168. Rabaai, A. A., Zogheib, B., AlShatti, A., and AlJamal, E. M. (2017). Adoption of e-government in developing countries: The case of the state of Kuwait. Journal of Global Research in Computer Science, 6(10).
  169. Rahi, S., Abd Ghani, M., Alnaser, F. M., and Ngah, A. H. (2018). Investigating the role of unified theory of acceptance and use of technology (UTAUT) in internet banking adoption context. Management Science Letters, 8(3), 173-186. doi: 10.5267/j.msl.2018.1.001
  170. Rauniar, R., Rawski, G., Yang, J., and Johnson, B. (2014). Technology acceptance model (TAM) and social media usage: An empirical study on Facebook. Journal of Enterprise Information Management, 27(1), 6-30. doi: 10.1108/JEIM-04-2012-0011
  171. Rezvani, A., Khosravi, P., and Dong, L. (2017). Motivating users toward continued usage of information systems: Self-determination theory perspective. Computers in Human Behavior, 76, 263-275. doi: 10.1016/j.chb.2017.07.032
  172. Ringle, C., Wende, S., and Becker, J. (2015). SmartPLS 3. boenningstedt: SmartPLS gmbH. http://www.smartpls.com
  173. Riquelme, H. E., and Rios, R. E. (2010). The moderating effect of gender in the adoption of mobile banking. International Journal of Bank Marketing, 28(5), 328-341. doi: 10.1108/02652321011064872
  174. Rouibah, K., Lowry, P. B., and Hwang, Y. (2016). The effects of perceived enjoyment and perceived risks on trust formation and intentions to use online payment systems: New perspectives from an Arab country. Electronic Commerce Research and Applications, 19, 33-43. doi: 10.1016/j.elerap.2016.07.001
  175. Roussou, I., Stiakakis, E., and Sifaleras, A. (2019). An empirical study on the commercial adoption of digital currencies. Information Systems and E-Business Management, 17(2-4), 223-259. doi: 10.1007/s10257-019-00426-7
  176. Routray, S., Khurana, R., Payal, R., and Gupta, R. (2019). A move towards cashless economy: A case of continuous usage of mobile wallets in India. Theoretical Economics Letters, 9(4), 1152. doi: 10.4236/tel.2019.94074
  177. Saade, R., and Bahli, B. (2005). The impact of cognitive absorption on perceived usefulness and perceived ease of use in on-line learning: An extension of the technology acceptance model. Information & Management, 42(2), 317-327. doi: 10.1016/j.im.2003.12.013
  178. Sabah, N. M. (2019). Motivation factors and barriers to the continuous use of blended learning approach using Moodle: Students' perceptions and individual differences. Behaviour & Information Technology, 39(8), 1-24. doi: 10.1080/0144929X.2019.1623323
  179. San Martin, H., and Herrero, A. (2012). Influence of the user's psychological factors on the online purchase intention in rural tourism: Integrating innovativeness to the Utaut framework. Tourism Management, 33(2), 341-350. doi: 10.1016/j.tourman.2011.04.003
  180. Sarstedt, M., Ringle, C. M., Smith, D., Reams, R., and Hair, J. F. (2014). Partial least squares structural equation modeling (PLS-SEM): A useful tool for family business researchers. Journal of Family Business Strategy, 5(1), 105-115. doi: 10.1016/j.jfbs.2014.01.002
  181. Shaikh, A. A., and Karjaluoto, H. (2015). Mobile banking adoption: A literature review. Telematics and Informatics, 32(1), 129-142. doi: 10.1016/j.tele.2014.05.003
  182. Shang, D., and Wu, W. (2017). Understanding mobile shopping consumers' continuance intention. Industrial Management & Data Systems, 117(1), 213-227. doi: 10.1108/IMDS-02-2016-0052
  183. Shao, Z., Zhang, L., Li, X., and Guo, Y. (2019). Antecedents of trust and continuance intention in mobile payment platforms: The moderating effect of gender. Electronic Commerce Research and Applications, 33, 100823. doi: 10.1016/j.elerap.2018.100823
  184. Shareef, M. A., Baabdullah, A., Dutta, S., Kumar, V., and Dwivedi, Y. K. (2018). Consumer adoption of mobile banking services: An empirical examination of factors according to adoption stages. Journal of Retailing and Consumer Services, 43, 54-67. doi: 10.1016/j.jretconser.2018.03.003
  185. Sharma, R., Singh, G., and Sharma, S. (2020). Modelling internet banking adoption in Fiji: A developing country perspective. International Journal of Information Management, 53, 102116. doi: 10.1016/j.ijinfomgt.2020.102116
  186. Sharma, S. K., and Sharma, M. (2019). Examining the role of trust and quality dimensions in the actual usage of mobile banking services: An empirical investigation. International Journal of Information Management, 44, 65-75. doi: 10.1016/j.ijinfomgt.2018.09.013
  187. Sharma, S. K., Govindaluri, S. M., Al-Muharrami, S., and Tarhini, A. (2017). A multi-analytical model for mobile banking adoption: A developing country perspective. Review of International Business and Strategy, 27(1), 133-148. doi: 10.1108/RIBS-11-2016-0074
  188. Sharma, S. K., Sharma, H., and Dwivedi, Y. K. (2019). A hybrid SEM-neural network model for predicting determinants of mobile payment services. Information Systems Management, 36(3), 243-261. doi: 10.1080/10580530.2019.1620504
  189. Shaw, N., and Sergueeva, K. (2019). The non-monetary benefits of mobile commerce: Extending UTAUT2 with perceived value. International Journal of Information Management, 45, 44-55. doi: 10.1016/j.ijinfomgt.2018.10.024
  190. Shin, D. H., Shin, Y. J., Choo, H., and Beom, K. (2011). Smartphones as smart pedagogical tools: Implications for smartphones as u-learning devices. Computers in Human Behavior, 27(6), 2207-2214. doi: 10.1016/j.chb.2011.06.017
  191. SSimintiras, A. C., Dwivedi, Y. K., and Rana, N. P. (2014). Can marketing strategies enhance the adoption of electronic government initiatives? International Journal of Electronic Government Research(IJEGR), 10(2), doi: 10.4018/ijegr.2014040101
  192. Singh, S., and Srivastava, R. K. (2018). Predicting the intention to use mobile banking in India. International Journal of Bank Marketing, 36(2), 357-378. doi: 10.1108/IJBM-12-2016-0186
  193. Slade, E., Dwivedi, Y. K., Piercy, N. C., and Williams, M. D. (2014). Modeling consumers' adoption intentions of remote mobile payments in the United Kingdom: Extending Utaut with innovativeness, risk, and trust: Consumers' adoption intentions of remote mobile payments. Psychology & Marketing, 32(8), 860-873. doi: 10.1002/mar.20823
  194. Slade, E., Williams, M., Dwivedi, Y., and Piercy, N. (2014). Exploring consumer adoption of proximity mobile payments. Journal of Strategic Marketing, 23(3), 209-223. doi: 10.1080/0965254X.2014.914075
  195. Spreng, R. A., MacKenzie, S. B., and Olshavsky, R. W. (1996). A reexamination of the determinants of consumer satisfaction. Journal of Marketing, 60(3), 15-32. doi: 10.1177/002224299606000302
  196. Statista. (2019a). Kuwait: Gross domestic product (GDP) in current prices from 1984 to 2024. Retrieved from https://www.statista.com/statistics/438858/gross-domestic-product-gdp-in-kuwait/
  197. Statista. (2019b). Kuwait-statistics & facts. Retrieved from https://www.statista.com/topics/4650/kuwait/
  198. Statista. (2019c). Mobile payments worldwide-Statist ics & facts. Retrieved from https://www.statista.com/topics/4872/mobile-payments-worldwide/
  199. Straub, D., and Gefen, D. (2004). Validation guidelines for is positivist research. Communications of the Association for Information Systems, 13. doi: 10.17705/1CAIS.01324
  200. Suh, B., and Han, I. (2002). Effect of trust on customer acceptance of internet banking. Electronic Commerce Research and Applications, 1(3), 247-263. doi: 10.1016/S1567-4223(02)00017-0
  201. Sun, B., Sun, C., Liu, C., and Gui, C. (2017). Research on initial trust model of mobile banking users. Journal of Risk Analysis and Crisis Response, 7(1), 13. doi: 10.2991/jrarc.2017.7.1.2
  202. Susanto, A., Chang, Y., and Ha, Y. (2016). Determinants of continuance intention to use the smartphone banking services: An extension to the expectation-confirmation model. Industrial Management & Data Systems, 116(3), 508-525. doi: 10.1108/IMDS-05-2015-0195
  203. Tak, P., and Panwar, S. (2017). Using UTAUT 2 model to predict mobile app based shopping: Evidences from India. Journal of Indian Business Research, 9(3), 248-264. doi: 10.1108/JIBR-11-2016-0132
  204. Tam, C., and Oliveira, T. (2017a). Understanding mobile banking individual performance: The Delone and Mclean model and the moderating effects of individual culture. Internet Research, 27(3), 538-562. doi: 10.1108/IntR-05-2016-0117
  205. Tam, C., and Oliveira, T. (2017b). Literature review of mobile banking and individual performance. International Journal of Bank Marketing, 35(7), 1044-1067. doi: 10.1108/IJBM-09-2015-0143
  206. Tam, C., Santos, D., and Oliveira, T. (2018). Exploring the influential factors of continuance intention to use mobile apps: Extending the expectation confirmation model. Information Systems Frontiers, 22(1), 243-257. doi: 10.1007/s10796-018-9864-5
  207. Teo, T. (2011). Factors influencing teachers' intention to use technology: Model development and test. Computers & Education, 57(4), 2432-2440. doi: 10.1016/j.compedu.2011.06.008
  208. Teo, T. S. H., Srivastava, S. C., and Jiang, L. (2008). Trust and electronic government success: An empirical study. Journal of Management Information Systems, 25(3), 99-132. doi: 10.2753/MIS0742-1222250303
  209. The Times Kuwait. (2019). Digital transactions, Fintech, to grow in coming years. Retrieved from https://www.timeskuwait.com/news/digital-transactions-fintech-to-grow-in-coming-years/
  210. Tran, L. T. T., Pham, L. M. T., and Le, L. T. (2019). E-satisfaction and continuance intention: The moderator role of online ratings. International Journal of Hospitality Management, 77, 311-322. doi: 10.1016/j.ijhm.2018.07.011
  211. Venkatesh, V., Morris, M. G., Davis, G. B., and Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. doi: 10.2307/30036540
  212. Venkatesh, V., Thong, J. Y. L., and Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178. doi: 10.2307/41410412
  213. Venkatesh, V., Thong, J. Y. L., Chan, F. K. Y., Hu, P. J. H., and Brown, S. A. (2011). Extending the two-stage information systems continuance model: Incorporating Utaut predictors and the role of context: Context, expectations and is continuance. Information Systems Journal, 21(6), 527-555. doi: 10.1111/j.1365-2575.2011.00373
  214. Voorhees, C. M., Brady, M. K., Calantone, R., and Ramirez, E. (2016). Discriminant validity testing in marketing: An analysis, causes for concern, and proposed remedies. Journal of the Academy of Marketing Science, 44(1), 119-134. doi: 10.1007/s11747-015-0455-4
  215. Wang, J. L., Jackson, L. A., Wang, H. Z., and Gaskin, J. (2015). Predicting Social Networking Site (SNS) use: Personality, attitudes, motivation and internet self-efficacy. Personality and Individual Differences, 80, 119-124. doi: 10.1016/j.paid.2015.02.016
  216. Wang, W. T., Ou, W. M., and Chen, W. Y. (2019). The impact of inertia and user satisfaction on the continuance intentions to use mobile communication applications: A mobile service quality perspective. International Journal of Information Management, 44, 178-193. doi: 10.1016/j.ijinfomgt.2018.10.011
  217. Wu, C. C., Huang, Y., and Hsu, C. L. (2014). Benevolence trust: A key determinant of user continuance use of online social networks. Information Systems and E-Business Management, 12(2), 189-211. doi: 10.1007/s10257-013-0216-1
  218. Xena, P., and Rahadi, R. A. (2019). Adoption of e-payment to support small medium enterprise payment system: A conceptualised model. International Journal of Accounting, 4(18), 32-41.
  219. Yang, S., Lu, Y., Chen, Y., and Gupta, S. (2015). Understanding consumers' mobile channel continuance: An empirical investigation of two fitness mechanisms. Behaviour & Information Technology, 34(12), 1135-1146. doi: 10.1080/0144929X.2014.988176
  220. Yu, C. S. (2012). Factors affecting individuals to adopt mobile banking: Empirical evidence from the UTAUT model. Journal of Electronic Commerce Research, 13(2), 19.
  221. Yuan, S., Liu, Y., Yao, R., and Liu, J. (2016). An investigation of users' continuance intention towards mobile banking in China. Information Development, 32(1), 20-34. doi: 10.1177/0266666914522140
  222. Yueh, H. P., Huang, J. Y., and Chang, C. (2015). Exploring factors affecting students' continued wiki use for individual and collaborative learning: An extended UTAUT perspective. Australasian Journal of Educational Technology, 31(1). doi:10.14742/ajet.170
  223. Zhou, T. (2012a). Examining mobile banking user adoption from the perspectives of trust and flow experience. Information Technology and Management, 13(1), 27-37. doi: 10.1007/s10799-011-0111-8
  224. Zhou, T. (2012b). Understanding users' initial trust in mobile banking: An elaboration likelihood perspective. Computers in Human Behavior, 28(4), 1518-1525. doi: 10.1016/j.chb.2012.03.021
  225. Zogheib, B., Rabaa'i, A., Zogheib, S., and Elsaheli, A. (2015). University student perceptions of technology use in mathematics learning. Journal of Information Technology Education: Research, 14, 417-438. doi: 10.28945/2315