DOI QR코드

DOI QR Code

Characterisation and Co-pyrolytic Degradation of the Sawdust and Waste Tyre Blends to Study the Effect of Temperature on the Yield of the Products

  • 투고 : 2020.12.24
  • 심사 : 2021.02.01
  • 발행 : 2021.04.10

초록

The present study aimed to determine the effect of co-pyrolysis of sawdust biomass and scrap tyre waste employing different blending ratios of sawdust to waste tyre such as 100:0, 75:25, 50:50, 25:75, and 0:100. The thermochemical characterization of feedstocks was carried out by employing the proximate, ultimate analysis, and thermogravimetric (TGA) analyses, calorific values, and scanning electron microscope coupled with energy dispersive x-ray analysis (SEM-EDX) to select the blending ratio having better bioenergy potential amongst the studied ratios. The blending ratio of 25:75 (sawdust to waste tyre) was selected for the co-pyrolysis study in a fixed-bed pyrolysis reactor system based on its solid biofuels properties such as heating value (30.18 MJ/kg), and carbon (71.81 wt%) and volatile matter (63.82 wt%) contents. The pyrolysis temperatures were varied as 500, 600 and 700 ℃ while the other parameters such as heating rate and nitrogen flowrate were maintained at 30 ℃/min and 0.5 L/min respectively. The bio-oil yields as 31.9, 47.1 and 61.2 wt%, bio-char yields as 34.5, 34.2 and 31.4 wt% and gaseous product yields as 33.6, 18.60 and 7.3 wt% at the pyrolysis temperatures of 500, 600 and 700 ℃ respectively were obtained. The blends of sawdust and waste tyres showed the improved energy characteristics which could provide the solution for the beneficial management of sawdust and scrape tyre wastes via co-pyrolysis processing.

키워드

참고문헌

  1. C. H. Ko, S. H. Park, J. K. Jeon, D. J. Suh, and K. E. Jeong, Upgrading of biofuel by the catalytic deoxygenation of biomass, Korean J. Chem. Eng., 29, 1657-1665 (2012). https://doi.org/10.1007/s11814-012-0199-5
  2. A. Abdullah, A. Ahmed, P. Akhter, A. Razzaq, M. Zafar, M. Hussain, N. Shahzad, K. Majeed, S. Khurrum, M. S. A. Bakar, and Y. K. Park, Bioenergy potential and thermochemical characterization of lignocellulosic biomass residues available in Pakistan, Korean J. Chem. Eng., 37, 1899-1906 (2020). https://doi.org/10.1007/s11814-020-0624-0
  3. A. Ahmed, M. S. Abu Bakar, R. Hamdani, Y. K. Park, S. S. Lam, R. S. Sukri, M. Hussain, K. Majeed, N. Phusunti, F. Jamil, and M. Aslam,Valorization of underutilized waste biomass from invasive species to produce biochar for energy and other value-added applications, Environ. Res., 186, 109596 (2020). https://doi.org/10.1016/j.envres.2020.109596
  4. A. Abdullah, A. Ahmed, P. Akhter, A. Razzaq, M. Hussain, N. Hossain, M. S. Abu Bakar, S. Khurram, K. Majeed, and Y. K. Park, Potential for sustainable utilisation of agricultural residues for bioenergy production in Pakistan: An overview, J. Clean. Prod., 287, 125047 (2021). https://doi.org/10.1016/j.jclepro.2020.125047
  5. A. Ahmed, M. S. Abu Bakar, R. S. Sukri, M. Hussain, A. Farooq, S. Moogi, and Y.-K. Park, Sawdust pyrolysis from the furniture industry in an auger pyrolysis reactor system for biochar and bio-oil production, Energy Convers. Manag., 42, 541-556 (2020).
  6. T. Chowdhury, H. Chowdhury, A. Ahmed, Y. K. Park, P. Chowdhury, N. Hossain, and S. M. Sait, Energy, exergy, and sustainability analyses of the agricultural sector in Bangladesh, Sustainability, 12, 4447-4460 (2020). https://doi.org/10.3390/su12114447
  7. H. W. Lee, B. R. Jun, H. Kim, D. H. Kim, J. K. Jeon, S. H. Park, C. H. Ko, T. W. Kim, and Y. K. Park, Catalytic hydrodeoxygenation of 2-methoxy phenol and dibenzofuran over Pt/mesoporous zeolites, Energy, 81, 33-40 (2015). https://doi.org/10.1016/j.energy.2014.11.058
  8. A. Ahmed, M. S. Abu Bakar, A. K. Azad, R. S. Sukri, and T. M. I. Mahlia, Potential thermochemical conversion of bioenergy from Acacia species in Brunei Darussalam: A review, Renew. Sustain. Energy Rev., 82, 3060-3076 (2017). https://doi.org/10.1016/j.rser.2017.10.032
  9. A. Hepbasli, A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future, Renew. Sustain. Energy Rev., 12, 593-661 (2008). https://doi.org/10.1016/j.rser.2006.10.001
  10. M. Islam Miskat, A. Ahmed, M. S. Rahman, H. Chowdhury, T. Chowdhury, P. Chowdhury, S. M. Sait, and Y.-K. Park, An overview of the hydropower production potential in Bangladesh to meet the energy requirements, Environ. Eng. Res., 26, 200514 (2021).
  11. A. K. Varma, L. S. Thakur, R. Shankar, and P. Mondal, Pyrolysis of wood sawdust: Effects of process parameters on products yield and characterization of products, Waste Manag., 89, 224-235 (2019). https://doi.org/10.1016/j.wasman.2019.04.016
  12. M. Haris Hamayun, M. Hussain, I. Shafiq, A. Ahmed, and Y.-K. Park, Investigation of the thermodynamic performance of anexisting steam power plant via energy and exergy analysesto restrain the environmental repercussions: A simulationstudy, Environ. Eng. Res., 27, 200683 (2022). https://doi.org/10.4491/eer.2020.683
  13. J. Y. Kim, H. W. Lee, S. M. Lee, J. Jae, and Y. K. Park, Overview of the recent advances in lignocellulose liquefaction for producing biofuels, bio-based materials and chemicals, Bioresour. Technol., 279, 373-384 (2019). https://doi.org/10.1016/j.biortech.2019.01.055
  14. E. H. Lee, R. Park, H. Kim, S. H. Park, S. C. Jung, J. K. Jeon, S. C. Kim, and Y. K. Park, Hydrodeoxygenation of guaiacol over Pt loaded zeolitic materials, J. Ind. Eng. Chem., 37, 18-21 (2016). https://doi.org/10.1016/j.jiec.2016.03.019
  15. A. Williams, J. M. Jones, L. Ma, and M. Pourkashanian, Pollutants from the combustion of solid biomass fuels, Prog. Energy Combust. Sci., 38, 113-137 (2012). https://doi.org/10.1016/j.pecs.2011.10.001
  16. A. Demirbas, Combustion characteristics of different biomass fuels, Prog. Energy Combust. Sci., 30, 219-230 (2004). https://doi.org/10.1016/j.pecs.2003.10.004
  17. M. S. Abu Bakar, A. Ahmed, D. M. Jeffery, S. Hidayat, R. S. Sukri, T. M. I. Mahlia, F. Jamil, M. S. Khurrum, A. Inayat, S. Moogi, and Y. K. Park, Pyrolysis of solid waste residues from Lemon Myrtle essential oils extraction for bio-oil production, Bioresour. Technol., 318, 123913 (2020). https://doi.org/10.1016/j.biortech.2020.123913
  18. D. K. Shen, S. Gu, K. H. Luo, A. V. Bridgwater, and M. X. Fang, Kinetic study on thermal decomposition of woods in oxidative environment, Fuel, 88, 1024-1030 (2009). https://doi.org/10.1016/j.fuel.2008.10.034
  19. T. Chowdhury, H. Chowdhury, A. Ahmed, Y. K. Park, P. Chowdhury, N. Hossain, and S. M. Sait, Assessing the theoretical prospects of bioethanol production as a biofuel from agricultural residues in Bangladesh: A review, Sustainability, 12, 8583 (2020). https://doi.org/10.3390/su12208583
  20. P. Energy Department, Prime Minist. Off. Brunei Darussalam, 44, 903-920 (2014).
  21. A. K. Varma and P. Mondal, Physicochemical characterization and pyrolysis kinetics of wood sawdust, Energ. Source. Part A, 38, 2536-2544 (2016). https://doi.org/10.1080/15567036.2015.1072604
  22. R. K. Singh, S. Mondal, B. Ruj, A. K. Sadhukhan, and P. Gupta, Interaction of three categories of tyre waste during co-pyrolysis: Effect on product yield and quality, J. Anal. Appl. Pyrolysis, 141, 104-418 (2019).
  23. M. Sienkiewicz, J. Kucinska-Lipka, H. Janik, and A. Balas, Progress in used tyres management in the European Union: A review, Waste Manag., 32, 1742-1751 (2012). https://doi.org/10.1016/j.wasman.2012.05.010
  24. Q. Li, F. Li, A. Meng, Z. Tan, and Y. Zhang, Thermolysis of scrap tire and rubber in sub/super-critical water, Waste Manag., 71, 311-324 (2018). https://doi.org/10.1016/j.wasman.2017.10.017
  25. A. Quek and R. Balasubramanian, Mathematical modeling of rubber tire pyrolysis, J. Anal. Appl. Pyrolysis, 95, 1-12 (2012). https://doi.org/10.1016/j.jaap.2012.01.012
  26. S. Seidelt, M. Muller-Hagedorn, and H. Bockhorn, Description of tire pyrolysis by thermal degradation behaviour of main components, J. Anal. Appl. Pyrolysis, 75, 16-18 (2006).
  27. A. Quek and R. Balasubramanian, Liquefaction of waste tires by pyrolysis for oil and chemicals - A review, J. Anal. Appl. Pyrolysis, 101, 1-16 (2013). https://doi.org/10.1016/j.jaap.2013.02.016
  28. E. L. K. Mui, D. C. K. Ko, and G. McKay, Production of active carbons from waste tyres - A review, Carbon, 42, 2789-2805 (2004). https://doi.org/10.1016/j.carbon.2004.06.023
  29. L. Wang, H. Lei, S. Ren, Q. Bu, J. Liang, Y. Wei, Y. Liu, G. S. J. Lee, S. Chen, J. Tang, Q. Zhang, and R. Ruan, Aromatics and phenols from catalytic pyrolysis of Douglas fir pellets in microwave with ZSM-5 as a catalyst, J. Anal. Appl. Pyrolysis, 98, 194-200 (2012). https://doi.org/10.1016/j.jaap.2012.08.002
  30. E. Zanella, M. Della Zassa, L. Navarini, and P. Canu, Low-temperature co-pyrolysis of polypropylene and coffee wastes to fuels, Energy Fuels, 27, 1357-1364 (2013). https://doi.org/10.1021/ef301305x
  31. T. Chowdhury, H. Chowdhury, N. Hossain, A. Ahmed, M. S. Hossen, P. Chowdhury, M. Thirugnanasambandam, and R. Saidur, Latest advancements on livestock wastemanagement and biogas production: Bangladesh's perspective, J. Clean. Prod., 44, 122-138, (2020).
  32. F. Jamil, M. Aslam, A. H. Al-Muhtaseb, A. Bokhari, S. Rafiq, Z. Khan, A. Inayat, A. Ahmed, S. Hossain, M. S. Khurrum, and M. S. A. Bakar, Greener and sustainable production of bioethylene from bioethanol: Current status, opportunities and perspectives, Rev. Chem. Eng., 36, 2356-2386 (2020).
  33. S. H. Ansari, A. Ahmed, A. Razzaq, D. Hildebrandt, X. Liu, and Y. Park, Incorporation of solar-thermal energy into a gasification process to co-produce bio-fertilizer and power, Environ. Pollut., 266, 103-117 (2020).
  34. Q. Cao, L. Jin, W. Bao, and Y. Lv, Investigations into the characteristics of oils produced from co-pyrolysis of biomass and tire, Fuel Process. Technol., 90, 337-342 (2009). https://doi.org/10.1016/j.fuproc.2008.10.005
  35. M. Z. Farooq, M. Zeeshan, S. Iqbal, N. Ahmed, and S. A. Y. Shah, Influence of waste tire addition on wheat straw pyrolysis yield and oil quality, Energy, 144, 200-206 (2018). https://doi.org/10.1016/j.energy.2017.12.026
  36. M. S. Hossain, M. R. Islam, M. S. Rahman, M. A. Kader, and H. Haniu, Biofuel from co-pyrolysis of solid tire waste and rice husk, Energy Procedia, 110, 453-458 (2017). https://doi.org/10.1016/j.egypro.2017.03.168
  37. J. D. Martinez, A. Veses, A. M. Mastral, R. Murillo, M. V. Navarro, N. Puy, A. Artigues, J. Bartroli, and T. Garcia, Co-pyrolysis of biomass with waste tyres: Upgrading of liquid bio-fuel, Fuel Process. Technol., 119, 263-271 (2014). https://doi.org/10.1016/j.fuproc.2013.11.015
  38. O. Sanahuja-Parejo, A. Veses, M. V. Navarro, J. M. Lopez, R. Murillo, M. S. Callen, and T. Garcia, Catalytic co-pyrolysis of grape seeds and waste tyres for the production of drop-in biofuels, Energy Convers. Manag., 171, 1202-1212 (2018). https://doi.org/10.1016/j.enconman.2018.06.053
  39. L. Wang, M. Chai, R. Liu, and J. Cai, Synergetic effects during co-pyrolysis of biomass and waste tire: A study on product distribution and reaction kinetics, Bioresour. Technol., 268, 363-370 (2018). https://doi.org/10.1016/j.biortech.2018.07.153
  40. J. Shen, S. Zhu, X. Liu, H. Zhang, and J. Tan, The prediction of elemental composition of biomass based on proximate analysis, Energy Convers. Manag., 51, 983-987 (2010). https://doi.org/10.1016/j.enconman.2009.11.039
  41. J. Alvarez, M. Amutio, G. Lopez, L. Santamaria, J. Bilbao, and M. Olazar, Improving bio-oil properties through the fast co-pyrolysis of lignocellulosic biomass and waste tyres, Waste Manag., 85, 385-395 (2019). https://doi.org/10.1016/j.wasman.2019.01.003
  42. S. A. Y. Shah, M. Zeeshan, M. Z. Farooq, N. Ahmed, and N. Iqbal, Co-pyrolysis of cotton stalk and waste tire with a focus on liquid yield quantity and quality, Renew. Energy., 130, 238-244 (2019). https://doi.org/10.1016/j.renene.2018.06.045
  43. S. Ucar and S. Karagoz, Co-pyrolysis of pine nut shells with scrap tires, Fuel, 137, 85-93 (2014). https://doi.org/10.1016/j.fuel.2014.07.082
  44. A. Ahmed, M. S. Abu Bakar, A. K. Azad, R. S. Sukri, and N. Phusunti, Intermediate pyrolysis of Acacia cincinnata and Acacia holosericea species for bio-oil and biochar production, Energy Convers. Manag., 176, 393-408 (2018). https://doi.org/10.1016/j.enconman.2018.09.041
  45. C. L. Williams, T. L. Westover, R. M. Emerson, J. S. Tumuluru, and C. Li, Sources of biomass feedstock variability and the potential impact on biofuels production, Bioenergy Res., 9, 1-12 (2016). https://doi.org/10.1007/s12155-015-9694-y
  46. A. Ahmed, S. Hidayat, M. S. Abu Bakar, A. K. Azad, R. S. Sukri, and N. Phusunti, Thermochemical characterisation of Acacia auriculiformis tree parts via proximate, ultimate, TGA, DTG, calorific value and FTIR spectroscopy analyses to evaluate their potential as a biofuel resource, Biofuels, 12, 9-20 (2018).
  47. Y. M. Kim, J. Jae, B. S. Kim, Y. Hong, S. C. Jung, and Y. K. Park, Catalytic co-pyrolysis of torrefied yellow poplar and high-density polyethylene using microporous HZSM-5 and mesoporous Al-MCM-41 catalysts, Energy Conv. Manage., 149, 966-973 (2017). https://doi.org/10.1016/j.enconman.2017.04.033
  48. S. Munir, S. S. Daood, W. Nimmo, A. M. Cunliffe, and B. M. Gibbs, Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres, Bioresour. Technol., 100, 1413-1418 (2009). https://doi.org/10.1016/j.biortech.2008.07.065
  49. D. Y. C. Leung and C. L. Wang, Kinetic modeling of scrap tire pyrolysis, Energy Fuels, 13, 421-427 (1999). https://doi.org/10.1021/ef980124l
  50. S. Syed, R. Qudaih, I. Talab, and I. Janajreh, Kinetics of pyrolysis and combustion of oil shale sample from thermogravimetric data, Fuel, 90, 1631-1637 (2011). https://doi.org/10.1016/j.fuel.2010.10.033
  51. F. Yao, Q. Wu, Y. Lei, W. Guo, and Y. Xu, Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis, Polym. Degrad. Stab., 93, 90-98 (2008). https://doi.org/10.1016/j.polymdegradstab.2007.10.012
  52. R. Murillo, E. Aylon, M. V. Navarro, M. S. Callen, A. Aranda, and A. M. Mastral, The application of thermal processes to valorise waste tyre, Fuel Process. Technol., 87, 143-147 (2006). https://doi.org/10.1016/j.fuproc.2005.07.005
  53. G. Lopez, R. Aguado, M. Olazar, M. Arabiourrutia, and J. Bilbao, Kinetics of scrap tyre pyrolysis under vacuum conditions, Waste Manag., 29, 2649 (2009). https://doi.org/10.1016/j.wasman.2009.06.005
  54. S. S. Idris, N. A. Rahman, and K. Ismail, Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA), Bioresour. Technol., 123, 581-591 (2012). https://doi.org/10.1016/j.biortech.2012.07.065
  55. M. J. Castaldi and E. Kwon, Thermo-gravimetric Analysis (TGA) of combustion and gasification of Styrene-Butadiene Copolymer (SBR), Proceedings of 13th Annual North American Waste to Energy Conference, January 01, North America (2005).
  56. P. Danielle Galiani, J. Antonio Malmonge, B. Guenther Soares, and L. Henrique Capparelli Mattoso, Studies on thermal-oxidative degradation behaviours of raw natural rubber: PRI and thermogravimetry analysis, Plast. Rubber Compos., 42, 334-339 (2013). https://doi.org/10.1179/1743289811Y.0000000046
  57. S. Tanaka, S. Kano, J. Lat, W. M. Effendi, N. P. Tan, A. Arifin, K. Sakurai, and J. J. Kendawang, Effects of acacia mangium on morphological and physicochemical properties of soil, J. Trop. For. Sci., 27, 357-368 (2015).
  58. H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel, 86, 1781-1788 (2007). https://doi.org/10.1016/j.fuel.2006.12.013
  59. F. Abnisa and W. M. A. Wan Daud, Optimization of fuel recovery through the stepwise co-pyrolysis of palm shell and scrap tire, Energy Convers. Manag., 99, 334-345 (2015). https://doi.org/10.1016/j.enconman.2015.04.030
  60. M. F. Laresgoiti, B. M. Caballero, I. De Marco, A. Torres, M. A. Cabrero, and M. J. Chomon, Characterization of the liquid products obtained in tyre pyrolysis, J. Anal. Appl. Pyrolysis, 71, 917-934 (2004). https://doi.org/10.1016/j.jaap.2003.12.003
  61. S. S. Moogi, J. Jae, H. P. R. Kannapu, A. Ahmed, E. D. Park, and Y. K. Park, Enhancement of aromatics from catalytic pyrolysis of yellow poplar: Role of hydrogen and methane decomposition, Bioresour. Technol., 315, 123835 (2020). https://doi.org/10.1016/j.biortech.2020.123835
  62. H. W. Ryu, D. H. Kim, J. Jae, S. S. Lam, E. D. Park, and Y. K. Park, Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons, Bioresour. Technol., 310, 123-135 (2020).
  63. B. S. Kim, Y. M. Kim, H. W. Lee, J. Jae, D. H. Kim, S. C. Jung, C. Watanabe, and Y. K. Park, Catalytic copyrolysis of cellulose and thermoplastics over HZSM-5 and HY, ACS Sustain. Chem. Eng., 4, 1354-1363 (2016). https://doi.org/10.1021/acssuschemeng.5b01381

피인용 문헌

  1. Characterization and Thermal Behavior Study of Biomass from Invasive Acacia mangium Species in Brunei Preceding Thermochemical Conversion vol.13, pp.9, 2021, https://doi.org/10.3390/su13095249