참고문헌
- C. H. Ko, S. H. Park, J. K. Jeon, D. J. Suh, and K. E. Jeong, Upgrading of biofuel by the catalytic deoxygenation of biomass, Korean J. Chem. Eng., 29, 1657-1665 (2012). https://doi.org/10.1007/s11814-012-0199-5
- A. Abdullah, A. Ahmed, P. Akhter, A. Razzaq, M. Zafar, M. Hussain, N. Shahzad, K. Majeed, S. Khurrum, M. S. A. Bakar, and Y. K. Park, Bioenergy potential and thermochemical characterization of lignocellulosic biomass residues available in Pakistan, Korean J. Chem. Eng., 37, 1899-1906 (2020). https://doi.org/10.1007/s11814-020-0624-0
- A. Ahmed, M. S. Abu Bakar, R. Hamdani, Y. K. Park, S. S. Lam, R. S. Sukri, M. Hussain, K. Majeed, N. Phusunti, F. Jamil, and M. Aslam,Valorization of underutilized waste biomass from invasive species to produce biochar for energy and other value-added applications, Environ. Res., 186, 109596 (2020). https://doi.org/10.1016/j.envres.2020.109596
- A. Abdullah, A. Ahmed, P. Akhter, A. Razzaq, M. Hussain, N. Hossain, M. S. Abu Bakar, S. Khurram, K. Majeed, and Y. K. Park, Potential for sustainable utilisation of agricultural residues for bioenergy production in Pakistan: An overview, J. Clean. Prod., 287, 125047 (2021). https://doi.org/10.1016/j.jclepro.2020.125047
- A. Ahmed, M. S. Abu Bakar, R. S. Sukri, M. Hussain, A. Farooq, S. Moogi, and Y.-K. Park, Sawdust pyrolysis from the furniture industry in an auger pyrolysis reactor system for biochar and bio-oil production, Energy Convers. Manag., 42, 541-556 (2020).
- T. Chowdhury, H. Chowdhury, A. Ahmed, Y. K. Park, P. Chowdhury, N. Hossain, and S. M. Sait, Energy, exergy, and sustainability analyses of the agricultural sector in Bangladesh, Sustainability, 12, 4447-4460 (2020). https://doi.org/10.3390/su12114447
- H. W. Lee, B. R. Jun, H. Kim, D. H. Kim, J. K. Jeon, S. H. Park, C. H. Ko, T. W. Kim, and Y. K. Park, Catalytic hydrodeoxygenation of 2-methoxy phenol and dibenzofuran over Pt/mesoporous zeolites, Energy, 81, 33-40 (2015). https://doi.org/10.1016/j.energy.2014.11.058
- A. Ahmed, M. S. Abu Bakar, A. K. Azad, R. S. Sukri, and T. M. I. Mahlia, Potential thermochemical conversion of bioenergy from Acacia species in Brunei Darussalam: A review, Renew. Sustain. Energy Rev., 82, 3060-3076 (2017). https://doi.org/10.1016/j.rser.2017.10.032
- A. Hepbasli, A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future, Renew. Sustain. Energy Rev., 12, 593-661 (2008). https://doi.org/10.1016/j.rser.2006.10.001
- M. Islam Miskat, A. Ahmed, M. S. Rahman, H. Chowdhury, T. Chowdhury, P. Chowdhury, S. M. Sait, and Y.-K. Park, An overview of the hydropower production potential in Bangladesh to meet the energy requirements, Environ. Eng. Res., 26, 200514 (2021).
- A. K. Varma, L. S. Thakur, R. Shankar, and P. Mondal, Pyrolysis of wood sawdust: Effects of process parameters on products yield and characterization of products, Waste Manag., 89, 224-235 (2019). https://doi.org/10.1016/j.wasman.2019.04.016
- M. Haris Hamayun, M. Hussain, I. Shafiq, A. Ahmed, and Y.-K. Park, Investigation of the thermodynamic performance of anexisting steam power plant via energy and exergy analysesto restrain the environmental repercussions: A simulationstudy, Environ. Eng. Res., 27, 200683 (2022). https://doi.org/10.4491/eer.2020.683
- J. Y. Kim, H. W. Lee, S. M. Lee, J. Jae, and Y. K. Park, Overview of the recent advances in lignocellulose liquefaction for producing biofuels, bio-based materials and chemicals, Bioresour. Technol., 279, 373-384 (2019). https://doi.org/10.1016/j.biortech.2019.01.055
- E. H. Lee, R. Park, H. Kim, S. H. Park, S. C. Jung, J. K. Jeon, S. C. Kim, and Y. K. Park, Hydrodeoxygenation of guaiacol over Pt loaded zeolitic materials, J. Ind. Eng. Chem., 37, 18-21 (2016). https://doi.org/10.1016/j.jiec.2016.03.019
- A. Williams, J. M. Jones, L. Ma, and M. Pourkashanian, Pollutants from the combustion of solid biomass fuels, Prog. Energy Combust. Sci., 38, 113-137 (2012). https://doi.org/10.1016/j.pecs.2011.10.001
- A. Demirbas, Combustion characteristics of different biomass fuels, Prog. Energy Combust. Sci., 30, 219-230 (2004). https://doi.org/10.1016/j.pecs.2003.10.004
- M. S. Abu Bakar, A. Ahmed, D. M. Jeffery, S. Hidayat, R. S. Sukri, T. M. I. Mahlia, F. Jamil, M. S. Khurrum, A. Inayat, S. Moogi, and Y. K. Park, Pyrolysis of solid waste residues from Lemon Myrtle essential oils extraction for bio-oil production, Bioresour. Technol., 318, 123913 (2020). https://doi.org/10.1016/j.biortech.2020.123913
- D. K. Shen, S. Gu, K. H. Luo, A. V. Bridgwater, and M. X. Fang, Kinetic study on thermal decomposition of woods in oxidative environment, Fuel, 88, 1024-1030 (2009). https://doi.org/10.1016/j.fuel.2008.10.034
- T. Chowdhury, H. Chowdhury, A. Ahmed, Y. K. Park, P. Chowdhury, N. Hossain, and S. M. Sait, Assessing the theoretical prospects of bioethanol production as a biofuel from agricultural residues in Bangladesh: A review, Sustainability, 12, 8583 (2020). https://doi.org/10.3390/su12208583
- P. Energy Department, Prime Minist. Off. Brunei Darussalam, 44, 903-920 (2014).
- A. K. Varma and P. Mondal, Physicochemical characterization and pyrolysis kinetics of wood sawdust, Energ. Source. Part A, 38, 2536-2544 (2016). https://doi.org/10.1080/15567036.2015.1072604
- R. K. Singh, S. Mondal, B. Ruj, A. K. Sadhukhan, and P. Gupta, Interaction of three categories of tyre waste during co-pyrolysis: Effect on product yield and quality, J. Anal. Appl. Pyrolysis, 141, 104-418 (2019).
- M. Sienkiewicz, J. Kucinska-Lipka, H. Janik, and A. Balas, Progress in used tyres management in the European Union: A review, Waste Manag., 32, 1742-1751 (2012). https://doi.org/10.1016/j.wasman.2012.05.010
- Q. Li, F. Li, A. Meng, Z. Tan, and Y. Zhang, Thermolysis of scrap tire and rubber in sub/super-critical water, Waste Manag., 71, 311-324 (2018). https://doi.org/10.1016/j.wasman.2017.10.017
- A. Quek and R. Balasubramanian, Mathematical modeling of rubber tire pyrolysis, J. Anal. Appl. Pyrolysis, 95, 1-12 (2012). https://doi.org/10.1016/j.jaap.2012.01.012
- S. Seidelt, M. Muller-Hagedorn, and H. Bockhorn, Description of tire pyrolysis by thermal degradation behaviour of main components, J. Anal. Appl. Pyrolysis, 75, 16-18 (2006).
- A. Quek and R. Balasubramanian, Liquefaction of waste tires by pyrolysis for oil and chemicals - A review, J. Anal. Appl. Pyrolysis, 101, 1-16 (2013). https://doi.org/10.1016/j.jaap.2013.02.016
- E. L. K. Mui, D. C. K. Ko, and G. McKay, Production of active carbons from waste tyres - A review, Carbon, 42, 2789-2805 (2004). https://doi.org/10.1016/j.carbon.2004.06.023
- L. Wang, H. Lei, S. Ren, Q. Bu, J. Liang, Y. Wei, Y. Liu, G. S. J. Lee, S. Chen, J. Tang, Q. Zhang, and R. Ruan, Aromatics and phenols from catalytic pyrolysis of Douglas fir pellets in microwave with ZSM-5 as a catalyst, J. Anal. Appl. Pyrolysis, 98, 194-200 (2012). https://doi.org/10.1016/j.jaap.2012.08.002
- E. Zanella, M. Della Zassa, L. Navarini, and P. Canu, Low-temperature co-pyrolysis of polypropylene and coffee wastes to fuels, Energy Fuels, 27, 1357-1364 (2013). https://doi.org/10.1021/ef301305x
- T. Chowdhury, H. Chowdhury, N. Hossain, A. Ahmed, M. S. Hossen, P. Chowdhury, M. Thirugnanasambandam, and R. Saidur, Latest advancements on livestock wastemanagement and biogas production: Bangladesh's perspective, J. Clean. Prod., 44, 122-138, (2020).
- F. Jamil, M. Aslam, A. H. Al-Muhtaseb, A. Bokhari, S. Rafiq, Z. Khan, A. Inayat, A. Ahmed, S. Hossain, M. S. Khurrum, and M. S. A. Bakar, Greener and sustainable production of bioethylene from bioethanol: Current status, opportunities and perspectives, Rev. Chem. Eng., 36, 2356-2386 (2020).
- S. H. Ansari, A. Ahmed, A. Razzaq, D. Hildebrandt, X. Liu, and Y. Park, Incorporation of solar-thermal energy into a gasification process to co-produce bio-fertilizer and power, Environ. Pollut., 266, 103-117 (2020).
- Q. Cao, L. Jin, W. Bao, and Y. Lv, Investigations into the characteristics of oils produced from co-pyrolysis of biomass and tire, Fuel Process. Technol., 90, 337-342 (2009). https://doi.org/10.1016/j.fuproc.2008.10.005
- M. Z. Farooq, M. Zeeshan, S. Iqbal, N. Ahmed, and S. A. Y. Shah, Influence of waste tire addition on wheat straw pyrolysis yield and oil quality, Energy, 144, 200-206 (2018). https://doi.org/10.1016/j.energy.2017.12.026
- M. S. Hossain, M. R. Islam, M. S. Rahman, M. A. Kader, and H. Haniu, Biofuel from co-pyrolysis of solid tire waste and rice husk, Energy Procedia, 110, 453-458 (2017). https://doi.org/10.1016/j.egypro.2017.03.168
- J. D. Martinez, A. Veses, A. M. Mastral, R. Murillo, M. V. Navarro, N. Puy, A. Artigues, J. Bartroli, and T. Garcia, Co-pyrolysis of biomass with waste tyres: Upgrading of liquid bio-fuel, Fuel Process. Technol., 119, 263-271 (2014). https://doi.org/10.1016/j.fuproc.2013.11.015
- O. Sanahuja-Parejo, A. Veses, M. V. Navarro, J. M. Lopez, R. Murillo, M. S. Callen, and T. Garcia, Catalytic co-pyrolysis of grape seeds and waste tyres for the production of drop-in biofuels, Energy Convers. Manag., 171, 1202-1212 (2018). https://doi.org/10.1016/j.enconman.2018.06.053
- L. Wang, M. Chai, R. Liu, and J. Cai, Synergetic effects during co-pyrolysis of biomass and waste tire: A study on product distribution and reaction kinetics, Bioresour. Technol., 268, 363-370 (2018). https://doi.org/10.1016/j.biortech.2018.07.153
- J. Shen, S. Zhu, X. Liu, H. Zhang, and J. Tan, The prediction of elemental composition of biomass based on proximate analysis, Energy Convers. Manag., 51, 983-987 (2010). https://doi.org/10.1016/j.enconman.2009.11.039
- J. Alvarez, M. Amutio, G. Lopez, L. Santamaria, J. Bilbao, and M. Olazar, Improving bio-oil properties through the fast co-pyrolysis of lignocellulosic biomass and waste tyres, Waste Manag., 85, 385-395 (2019). https://doi.org/10.1016/j.wasman.2019.01.003
- S. A. Y. Shah, M. Zeeshan, M. Z. Farooq, N. Ahmed, and N. Iqbal, Co-pyrolysis of cotton stalk and waste tire with a focus on liquid yield quantity and quality, Renew. Energy., 130, 238-244 (2019). https://doi.org/10.1016/j.renene.2018.06.045
- S. Ucar and S. Karagoz, Co-pyrolysis of pine nut shells with scrap tires, Fuel, 137, 85-93 (2014). https://doi.org/10.1016/j.fuel.2014.07.082
- A. Ahmed, M. S. Abu Bakar, A. K. Azad, R. S. Sukri, and N. Phusunti, Intermediate pyrolysis of Acacia cincinnata and Acacia holosericea species for bio-oil and biochar production, Energy Convers. Manag., 176, 393-408 (2018). https://doi.org/10.1016/j.enconman.2018.09.041
- C. L. Williams, T. L. Westover, R. M. Emerson, J. S. Tumuluru, and C. Li, Sources of biomass feedstock variability and the potential impact on biofuels production, Bioenergy Res., 9, 1-12 (2016). https://doi.org/10.1007/s12155-015-9694-y
- A. Ahmed, S. Hidayat, M. S. Abu Bakar, A. K. Azad, R. S. Sukri, and N. Phusunti, Thermochemical characterisation of Acacia auriculiformis tree parts via proximate, ultimate, TGA, DTG, calorific value and FTIR spectroscopy analyses to evaluate their potential as a biofuel resource, Biofuels, 12, 9-20 (2018).
- Y. M. Kim, J. Jae, B. S. Kim, Y. Hong, S. C. Jung, and Y. K. Park, Catalytic co-pyrolysis of torrefied yellow poplar and high-density polyethylene using microporous HZSM-5 and mesoporous Al-MCM-41 catalysts, Energy Conv. Manage., 149, 966-973 (2017). https://doi.org/10.1016/j.enconman.2017.04.033
- S. Munir, S. S. Daood, W. Nimmo, A. M. Cunliffe, and B. M. Gibbs, Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres, Bioresour. Technol., 100, 1413-1418 (2009). https://doi.org/10.1016/j.biortech.2008.07.065
- D. Y. C. Leung and C. L. Wang, Kinetic modeling of scrap tire pyrolysis, Energy Fuels, 13, 421-427 (1999). https://doi.org/10.1021/ef980124l
- S. Syed, R. Qudaih, I. Talab, and I. Janajreh, Kinetics of pyrolysis and combustion of oil shale sample from thermogravimetric data, Fuel, 90, 1631-1637 (2011). https://doi.org/10.1016/j.fuel.2010.10.033
- F. Yao, Q. Wu, Y. Lei, W. Guo, and Y. Xu, Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis, Polym. Degrad. Stab., 93, 90-98 (2008). https://doi.org/10.1016/j.polymdegradstab.2007.10.012
- R. Murillo, E. Aylon, M. V. Navarro, M. S. Callen, A. Aranda, and A. M. Mastral, The application of thermal processes to valorise waste tyre, Fuel Process. Technol., 87, 143-147 (2006). https://doi.org/10.1016/j.fuproc.2005.07.005
- G. Lopez, R. Aguado, M. Olazar, M. Arabiourrutia, and J. Bilbao, Kinetics of scrap tyre pyrolysis under vacuum conditions, Waste Manag., 29, 2649 (2009). https://doi.org/10.1016/j.wasman.2009.06.005
- S. S. Idris, N. A. Rahman, and K. Ismail, Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA), Bioresour. Technol., 123, 581-591 (2012). https://doi.org/10.1016/j.biortech.2012.07.065
- M. J. Castaldi and E. Kwon, Thermo-gravimetric Analysis (TGA) of combustion and gasification of Styrene-Butadiene Copolymer (SBR), Proceedings of 13th Annual North American Waste to Energy Conference, January 01, North America (2005).
- P. Danielle Galiani, J. Antonio Malmonge, B. Guenther Soares, and L. Henrique Capparelli Mattoso, Studies on thermal-oxidative degradation behaviours of raw natural rubber: PRI and thermogravimetry analysis, Plast. Rubber Compos., 42, 334-339 (2013). https://doi.org/10.1179/1743289811Y.0000000046
- S. Tanaka, S. Kano, J. Lat, W. M. Effendi, N. P. Tan, A. Arifin, K. Sakurai, and J. J. Kendawang, Effects of acacia mangium on morphological and physicochemical properties of soil, J. Trop. For. Sci., 27, 357-368 (2015).
- H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel, 86, 1781-1788 (2007). https://doi.org/10.1016/j.fuel.2006.12.013
- F. Abnisa and W. M. A. Wan Daud, Optimization of fuel recovery through the stepwise co-pyrolysis of palm shell and scrap tire, Energy Convers. Manag., 99, 334-345 (2015). https://doi.org/10.1016/j.enconman.2015.04.030
- M. F. Laresgoiti, B. M. Caballero, I. De Marco, A. Torres, M. A. Cabrero, and M. J. Chomon, Characterization of the liquid products obtained in tyre pyrolysis, J. Anal. Appl. Pyrolysis, 71, 917-934 (2004). https://doi.org/10.1016/j.jaap.2003.12.003
- S. S. Moogi, J. Jae, H. P. R. Kannapu, A. Ahmed, E. D. Park, and Y. K. Park, Enhancement of aromatics from catalytic pyrolysis of yellow poplar: Role of hydrogen and methane decomposition, Bioresour. Technol., 315, 123835 (2020). https://doi.org/10.1016/j.biortech.2020.123835
- H. W. Ryu, D. H. Kim, J. Jae, S. S. Lam, E. D. Park, and Y. K. Park, Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons, Bioresour. Technol., 310, 123-135 (2020).
- B. S. Kim, Y. M. Kim, H. W. Lee, J. Jae, D. H. Kim, S. C. Jung, C. Watanabe, and Y. K. Park, Catalytic copyrolysis of cellulose and thermoplastics over HZSM-5 and HY, ACS Sustain. Chem. Eng., 4, 1354-1363 (2016). https://doi.org/10.1021/acssuschemeng.5b01381
피인용 문헌
- Characterization and Thermal Behavior Study of Biomass from Invasive Acacia mangium Species in Brunei Preceding Thermochemical Conversion vol.13, pp.9, 2021, https://doi.org/10.3390/su13095249