References
- von Engelhardt W, Hauffe R. Functions of the omasum in small domestic ruminants. IV. Absorption and secretion of electrolytes. Zentralbl Veterinarmed A 1975;22:367-75. https://doi.org/10.1111/j.1439-0442.1975.tb01442.x
- Kramer T, Michelberger T, Gurtler H, Gabel G. Absorption of short-chain fatty acids across ruminal epithelium of sheep. J Comp Physiol B 1996;166:262-9. https://doi.org/10.1007/BF00262870
- Ritzhaupt A, Wood IS, Ellis A, Hosie KB, Shirazi-Beechey SP. Identification and characterization of a monocarboxylate transporter (MCT1) in pig and human colon: its potential to transport L-lactate as well as butyrate. J Physiol 1998;513: 719-32. https://doi.org/10.1111/j.1469-7793.1998.719ba.x
- Gabel G, Aschenbach JR, Muller F. Transfer of energy substrates across the ruminal epithelium: implications and limitations. Anim Health Res Rev 2002;3:15-30. https://doi.org/10.1079/AHRR200237
- Tyagi S, Venugopalakrishnan J, Ramaswamy K, Dudeja PK. Mechanism of n-butyrate uptake in the human proximal colonic basolateral membranes. Am J Physiol Gastrointest Liver Physiol 2002;282:G676-82. https://doi.org/10.1152/ajpgi.00173.2000
- von Engelhardt W, Burmester M, Hansen K, Becker G, Rechkemmer G. Effects of amiloride and ouabain on short-chain fatty acid transport in guinea-pig large intestine. J Physiol 1993;460:455-66. https://doi.org/10.1113/jphysiol.1993.sp019481
- von Engelhardt W, Burmester M, Hansen K, Becker G. Unidirectional fluxes of short-chain fatty acids across segments of the large intestine in pig, sheep and pony compared with guinea pig. J Comp Physiol B 1995;165:29-36. https://doi.org/10.1007/BF00264683
- Smith RH. Microbial activity in the omasum. Proc Nutr Soc 1984;43:63-8. https://doi.org/10.1079/PNS19840028
- Tamminga S, van Vuuren AM. Formation and utilization of end products of lignocellulose degradation in ruminants. Anim Feed Sci Technol 1988;21:141-59. https://doi.org/10.1016/0377-8401(88)90096-X
- Ali O, Shen Z, Tietjen U, Martens H. Transport of acetate and sodium in sheep omasum: mutual, but asymmetric interactions. J Comp Physiol B 2006;176:477-87. https://doi.org/10.1007/s00360-006-0069-8
- Boron WF, Boulpaep EL. Medical physiology: a cellular and molecular approaoch. 3rd ed. Philadelphia, PA, USA: Saunders/Elsevier; 2017.
- Klisic J, Hu MC, Nief V, et al. Insulin activates Na+/H+ exchanger 3: biphasic response and glucocorticoid dependence. Am J Physiol Renal Physiol 2002;283:F532-9. https://doi.org/10.1152/ajprenal.00365.2001
- Spencer AG, Labonte ED, Rosenbaum DP, et al. Intestinal inhibition of the Na+/H+ exchanger 3 prevents cardiorenal damage in rats and inhibits Na+ uptake in humans. Sci Transl Med 2014;6:227ra36. 10.1126/scitranslmed.3007790
- Badger MR, Price GD. The role of carbonic anhydrase in photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 1994;45:369-92. https://doi.org/10.1146/annurev.pp.45.060194.002101
- Martens H, Kudritzki J, Wolf K, Schweigel M. No evidence for active peptide transport in forestomach epithelia of sheep. J Anim Physiol Anim Nutr 2001;85:314-24. https://doi.org/10.1046/j.1439-0396.2001.00319.x
- Rabbani I, Siegling-Vlitakis C, Noci B, Martens H. Evidence for NHE3-mediated Na transport in sheep and bovine forestomach. Am J Physiol Regul Integr Comp Physiol 2011;301: R313-9. https://doi.org/10.1152/ajpregu.00580.2010
- Martens H, Gabel G. Transport of Na and Cl across the epithelium of ruminant forestomachs: rumen and omasum. A review. Comp Biochem Physiol A Physiol 1998;90:569-75. https://doi.org/10.1016/0300-9629(88)90669-X
- Caushi D. Transport of HCO3- in sheep omasum [dissertation]. Berlin, Germany: Freie Universitat Berlin; 2015.
- Gabel G, Sehested J. SCFA transport in the forestomach of ruminants. Comp Biochem Physiol A Physiol 1997;118:36774. https://doi.org/10.1016/S0300-9629(96)00321-0
- Allen MS. Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber. J Dairy Sci 1997;80:1447-62. https://doi.org/10.3168/jds.S0022-0302(97)76074-0
- Charney AN, Micic L, Egnor RW. Nonionic diffusion of short-chain fatty acids across rat colon. Am J Physiol Gastrointest Liver Physiol 1998;274:G518-24. https://doi.org/10.1152/ajpgi.1998.274.3.G518
- Argenzio RA, Whipp SC. Inter-relationship of sodium, chloride, bicarbonate and acetate transport by the colon of the pig. J Physiol 1979;295:365-81. https://doi.org/10.1113/jphysiol.1979.sp012974
- Gabel P, Bestmann M, Martens H. Influences of diet, short-chain fatty acids, lactate and chloride on bicarbonate movement across the reticulo-rumen wall of sheep. J Vet Med A 1991;38:523-9. https://doi.org/10.1111/j.1439-0442.1991.tb01043.x
- Muller F, Aschenbach JR, Gabel G. Role of Na+/H+ exchangeand HCO3- transport in pHi recovery from intracellular acid load in cultured epithelial cells of sheep rumen. J Comp Physiol B 2000;170:337-43. https://doi.org/10.1007/s003600000107
- Butzner JD, Meddings JB, Dalal V. Inhibition of short-chain fatty acid absorption and Na+ absorption during acute colitis in the rabbit. Gastroenterology 1994;106:1190-8. https://doi.org/10.1016/0016-5085(94)90009-4
- Binder HJ, Mehta P. Characterization of butyrate-dependent electroneutral Na-Cl absorption in the rat distal colon. Pflugers Arch 1990;417:365-9. https://doi.org/10.1007/BF00370654
- Petersen KU, Wood JR, Schulze G, Heintze K. Stimulation of gallbladder fluid and electrolyte absorption by butyrate. J Membr Biol 1981;62:183-93. https://doi.org/10.1007/BF01998164