References
- Ahani, A., Rahim, N. Z. A., and Nilashi, M. (2017). Forecasting social CRM adoption in SMEs: A combined SEM-neural network method. Computers in Human Behavior, 75, 560-578. doi:10.1016/J.CHB.2017.05.032.
- Al-Shihi, H., Sharma, S. K., and Sarrab, M. (2018). Neural network approach to predict mobile learning acceptance. Education and Information Technologies, 23(5), 1805-1824. doi:10.1007/s10639-018-9691-9.
- Arnold, J. F., and Sade, R. M. (2017). Wearable technologies in collegiate sports: The ethics of collecting biometric data from student-athletes. The American Journal of Bioethics: AJOB, 17(1), 67-70. doi:10.1080/15265161.2016.1251648.
- Bai, J., Shen, L., Sun, H., and Shen, B. (2017). Physiological informatics: Collection and analyses of data from wearable sensors and smartphone for healthcare. In Healthcare and big data management (pp. 17-37). Springer. doi:10.1007/978-981-10-6041-0_2.
- Banerjee, S.(Sy), Hemphill, T. A., and Longstreet, P. (2017). Is IOT a threat to consumer consent? The perils of wearable devices health data exposure. SSRN Electronic Journal. doi:10.2139/ssrn.3038872.
- Blumenthal, J., Wilkinson, A., and Chignell, M. (2018). Physiotherapists' and physiotherapy students' perspectives on the use of mobile or wearable technology in their practice. Physiotherapy Canada, 70(3), 251-261. doi:10.3138/ptc.2016-100.e.
- Chang, H. S., Lee, S. C., and Ji, Y. G. (2016). Wearable device adoption model with TAM and TTF. International Journal of Mobile Communications, 14(5), 518. doi:10.1504/IJMC.2016.078726.
- Chong, A. Y. L. (2013). Predicting m-commerce adoption determinants: A neural network approach. Expert Systems with Applications, 40(2), 523-530. doi:10.1016/J.ESWA.2012.07.068.
- Chong, A. Y. L., Liu, M. J., Luo, J., and Keng-Boon, O. (2015). Predicting RFID adoption in healthcare supply chain from the perspectives of users. International Journal of Production Economics, 159, 66-75. doi:10.1016/J.IJPE.2014.09.034.
- Connaway, L., and Powell, R. (2010). Basic research methods for librarians. ABC-CLIO. Retrieved form https://books.google.com/books?hl=en&lr=&id=_7ySMR0T9uYC&oi=fnd&pg=PP1&dq=Basic+Research+Methods+for+Librarians,+Fifth+Edition&ots=5KBEm0m6pQ&sig=Yun4n1QofCE2_xEQu7ZlcTA4RVg.
- Cummins, P. (2017). TBI and NFL culture: Can players autonomously refuse biometric monitoring? The American Journal of Bioethics, 17(1), 75-77. doi:10.1080/15265161.2016.1251645.
- Curmi, F., Ferrario, M. A., and Whittle, J. (2017). Biometric data sharing in the wild: Investigating the effects on online sports spectators. International Journal of Human-Computer Studies, 105, 56-67. doi:10.1016/J.IJHCS.2017.03.008.
- Curtis, D., Shih, E., Waterman, J., Guttag, J., Bailey, J. M., Stair, T., Greenes, R. A., and Ohno-Machado, L. (2008). Physiological signal monitoring in the waiting areas of an emergency room. Proceedings of the 3rd International ICST Conference on Body Area Networks. doi:10.4108/ICST.BODYNETS2008.2968.
- Davis, F. (1985). A technology acceptance model for empirically testing new end-user information systems: Theory and results. https://dspace.mit.edu/bitstream/handle/1721.1/15192/14927137-MIT.pdf.
- Dehghani, M., Kim, K. J., and Dangelico, R. M. (2018). Will smartwatches last? Factors contributing to intention to keep using smart wearable technology. Telematics and Informatics, 35(2), 480-490. doi:10.1016/j.tele.2018.01.007.
- Evans, R., McNamee, M., and Guy, O. (2017). Ethics, nanobiosensors and elite sport: The need for a new governance framework. Science and Engineering Ethics, 23(6), 1487-1505. doi:10.1007/s11948-016-9855-1.
- Fensli, R., Pedersen, P. E., Gundersen, T., and Hejlesen, O. (2008). Sensor acceptance model-measuring patient acceptance of wearable sensors. Methods of Information in Medicine. doi:10.3414/ME9106.
- Fornell, C., and Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39. doi:10.2307/3151312.
- Gaura, E., Kemp, J., and Brusey, J. (2013). Leveraging knowledge from physiological data: On-body heat stress risk prediction with sensor networks. IEEE Transactions on Biomedical Circuits and Systems, 7(6), 861-870. doi:10.1109/TBCAS.2013.2254485.
- Green, E. C., and Murphy, E. (2014). Health belief model. In The wiley blackwell encyclopedia of health, illness, behavior, and society (pp. 766-769). John Wiley & Sons, Ltd. doi:10.1002/9781118410868.wbehibs410.
- Grispos, G., Glisson, W. B., and Choo, K. K. R. (2017). Medical cyber-physical systems development: A forensics-driven approach. 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), 108-113. doi:10.1109/CHASE.2017.68.
- Guest, W., Wild, F., Vovk, A., Lefrere, P., Klemke, R., Fominykh, M., and Kuula, T. (2018). A technology acceptance model for augmented reality and wearable technologies. Journal of Universal Computer Science, 24(2), 192-219. Retrieved form http://www.jucs.org/jucs_24_2/a_technology_acceptance_model/jucs_24_02_0192_0219_guest.pdf.
- Haberstroh, T. (2017). DeAndre's big whoop. ESPN, Retrieved form http://www.espn.com/nba/story/_/id/18801090/deandre-jordan-plays-hidden-device.
- Hair, J. F., Black, W. C., Babin, B. J., and Anderson, R. E. (2013). Multivariate data analysis. Pearson Education Limited. Retrieved form https://books.google.fr/books?id=oLCpBwAAQBAJ&dq=multivariate+data+analysis+hair&hl=fr&sa=X&ved=0ahUK Ewjv9ojKv8LeAhUPExoKHUa_D8kQ6AEIMTAB.
- Huang, J. C. (2010). Remote health monitoring adoption model based on artificial neural networks. Expert Systems with Applications, 37(1), 307-314. doi:10.1016/J.ESWA.2009.05.063.
- Jones, L. E. (2017). Renewable energy integration: Practical management of variability, uncertainty and flexibility in power grids. Academic Press.
- Karkazis, K., and Fishman, J. R. (2017). Tracking U.S. professional athletes: The ethics of biometric technologies. The American Journal of Bioethics, 17(1), 45-60. doi:10.1080/15265161.2016.1251633.
- Kim, T., and Chiu, W. (2018). Consumer acceptance of sports wearable technology: The role of technology readiness. International Journal of Sports Marketing and Sponsorship, 20(1), 109-126. doi:10.1108/IJSMS06-2017-0050.
- Kingsford, K. M., Fengli, Z., and Komlan, G. (2017). Patient knowledge and data privacy in healthcare records system. 2017 2nd International Conference on Communication Systems, Computing and IT Applications(CSCITA), 154-159. doi:10.1109/CSCITA.2017.8066543.
- Lee, L., Lee, J., Egelman, S., and Wagner, D. (2016). Information disclosure concerns in the age of wearable computing. NDSS Workshop on Usable Security, 1. doi:10.14722/usec.2016.23006.
- Leong, L. Y., Hew, T. S., Tan, G. W. H., and Ooi, K. B. (2013). Predicting the determinants of the NFC-enabled mobile credit card acceptance: A neural networks approach. Expert Systems with Applications, 40(14), 5604-5620. doi:10.1016/J.ESWA.2013.04.018.
- Loshin, D. (2012). Business intelligence: The savvy manager's guide. Morgan Kaufmann. Retrieved form https://books.google.fr/books?hl=en&lr=&id=WLv2Vj2QmL4C&oi=fnd&pg=PP1&dq=Business+intelligence+:+the+savvy+manager%27s+guide&ots=UDmQRbzAl0&sig=n5icnqMqdT_bEZ77V-_RPZZnswk&redir_esc=y#v=onepage&q=Businessintelligence%3Athesavvymanager's guide&f=false.
- Luna, R., Rhine, E., Myhra, M., Sullivan, R., and Kruse, C. S. (2016). Cyber threats to health information systems: A systematic review. Technology and Health Care, 24(1), 1-9. doi:10.3233/THC-151102.
- Lunney, A., Cunningham, N. R., and Eastin, M. S. (2016). Wearable fitness technology: A structural investigation into acceptance and perceived fitness outcomes. Computers in Human Behavior, 65, 114-120. doi:10.1016/j.chb.2016.08.007.
- Meghani, D., and Geetha, S. (2016). ECG steganography to secure patient data in an e-healthcare system. Proceedings of the ACM Symposium on Women in Research 2016-WIR '16, 66-70. doi:10.1145/2909067.2909078.
- Mnjama, J., Foster, G., and Irwin, B. (2017). A privacy and security threat assessment framework for consumer health wearables. 2017 Information Security for South Africa(ISSA), 66-73. doi:10.1109/ISSA.2017.8251776.
- Moore, G. C., and Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3), 192-222. doi:10.1287/isre.2.3.192.
- Pfeiffer, J., Von Entress-Fursteneck, M., Urbach, N., and Buchwald, A. (2016). Quantify-me: Consumer acceptance of wearable self-tracking devices. https://eref.uni-bayreuth.de/32345/.
- Priyadarshinee, P., Raut, R. D., Jha, M. K., and Gardas, B. B. (2017). Understanding and predicting the determinants of cloud computing adoption: A two staged hybrid SEM-Neural networks approach. Computers in Human Behavior, 76, 341-362. doi:10.1016/J.CHB.2017.07.027.
- Rahimi, B., Nadri, H., Lotfnezhad Afshar, H., and Timpka, T. (2018). A systematic review of the technology acceptance model in health informatics. Applied Clinical Informatics, 9(3), 604-634. doi:10.1055/s-0038-1668091.
- Rajendra Kumar, C. (2008). Research methodology. APH Pub. Corp.
- Raut, R. D., Priyadarshinee, P., Gardas, B. B., and Jha, M. K. (2018). Analyzing the factors influencing cloud computing adoption using three stage hybrid SEM-ANN-ISM (SEANIS) approach. Technological Forecasting and Social Change, 134, 98-123. doi:10.1016/J.TECHFORE.2018.05.020.
- Rivero-Garcia, A., Santos-Gonzalez, I., Hernandez-Goya, C., Caballero-Gil, P., and Yung, M. (2017). Patients' data management system protected by identity-based authentication and key exchange. Sensors, 17(4), 733. doi:10.3390/s17040733.
- Roberts, J. L., Cohen, I. G., Deubert, C. R., and Lynch, H. F. (2017). The legality of biometric screening of professional athletes. The American Journal of Bioethics, 17(1), 65-67. doi:10.1080/15265161.2016.1251647.
- Rovell, D. (2017). MLB approves on-field biometric monitoring device. ESPN, Retrieved form http://www.espn.com/mlb/story/_/id/18835843/mlb-approves-field-biometric-monitoring-device.
- Saheb, T. (2018). Big data analytics in the context of internet of things and the emergence of real-time systems: A systematic literature review. Int. J. High Performance Systems Architecture, 8(2), 34-50. doi:10.1504/IJHPSA.2018.10015191.
- Saheb, T. (2020). An empirical investigation of the adoption of mobile health applications: Integrating big data and social media services. Health and Technology, 10(5), 1063-1077. doi:10.1007/s12553-020-00422-9.
- Saheb, T., and Izadi, L. (2019). Paradigm of IoT big data analytics in the healthcare industry: A review of scientific literature and mapping of research trends. Telematics and Informatics, 41, 70-85. doi:10.1016/J.TELE.2019.03.005.
- Saheb, T., and Saheb, M. (2019). Analyzing and visualizing knowledge structures of health informatics from 1974 to 2018: A bibliometric and social network analysis. Healthcare Informatics Research, 25(2), 61-72. https://doi.org/10.4258/hir.2019.25.2.61.
- Saheb, T., and Saheb, T. (2020). Understanding the development trends of big data technologies: An analysis of patents and the cited scholarly works. Journal of Big Data, 7, 12. doi:10.1186/s40537-020-00287-9.
- Sergueeva, K., and Shaw, N. (2016). Wearable technology in hospitals: Overcoming patient concerns about privacy. International Conference on HCI in Business, Government, and Organizations, 446-456. doi:10.1007/978-3-319-39399-5_42.
- Shmueli, G., and Koppius, O. R. (2011). Predictive analytics in information systems research. MIS Quarterly, 35(3), 553-572. doi:10.2307/23042796.
- Song, J., Kim, J., and Cho, K. (2018). Understanding users' continuance intentions to use smart-connected sports products. Sport Management Review, 21(5), 477-490. doi:10.1016/J.SMR.2017.10.004.
- Spagnolli, A., Guardigli, E., Orso, V., Varotto, A., and Gamberini, L. (2014). Measuring user acceptance of wearable symbiotic devices: Validation study across application scenarios. International Workshop on Symbiotic Interaction, 87-98. doi:10.1007/978-3-319-13500-7_7.
- Talukder, M. S., Chiong, R., Bao, Y., and Hayat Malik, B. (2018). Acceptance and use predictors of fitness wearable technology and intention to recommend. Industrial Management & Data Systems, 119(1), 170-188. doi:10.1108/IMDS-01-2018-0009.
- Tan, G. W. H., Ooi, K. B., Leong, L. Y., and Lin, B. (2014). Predicting the drivers of behavioral intention to use mobile learning: A hybrid SEM-Neural Networks approach. Computers in Human Behavior, 36, 198-213. doi:10.1016/J.CHB.2014.03.052.
- Thilakanathan, D., Chen, S., Nepal, S., Calvo, R., and Alem, L. (2014). A platform for secure monitoring and sharing of generic health data in the Cloud. Future Generation Computer Systems, 35, 102-113. doi:10.1016/j.future.2013.09.011.
- Tu, J. V. (1996). Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Journal of Clinical Epidemiology, 49(11), 1225-1231. doi:10.1016/S0895-4356(96)00002-9.
- Xu, J., Cooke, F. L., Gen, M., and Ahmed, S. E. (2018). Proceedings of the Twelfth International Conference on Management Science and Engineering Management. Springer International Publishing. Retrieved form https://books.google.fr/books/about/Proceedings_of_the_Twelfth_International.html?id=UPDhtgEACAAJ&redir_esc=y.
- Yang, H., Yu, J., Zo, H., and Choi, M. (2016). User acceptance of wearable devices: An extended perspective of perceived value. Telematics and Informatics, 33(2), 256-269. doi:10.1016/j.tele.2015.08.007.