DOI QR코드

DOI QR Code

Predicting the Adoption of Health Wearables with an Emphasis on the Perceived Ethics of Biometric Data

  • Received : 2021.01.17
  • Accepted : 2021.02.18
  • Published : 2021.03.31

Abstract

The main purpose of this research is to understand the strongest predictors of wearable adoption among athletes with an emphasis on the perceived ethics of biometric data. We performed a word co-occurrence study of biometrics research to determine the ethical constructs of biometric data. A questionnaire incorporating the Unified Theory of Acceptance and Use of Technology (UTAUT), Health Belief Model and Biometric Data Ethics was then designed to develop a neural network model to predict the adoption of wearable sensors among athletes. Our model shows that wearable adoption's strongest predictors are perceived ethics, perceived profit, and perceived threat; which can be categorized as professional stressors. The key theoretical contribution of this paper is to extend the literature on UTAUT by developing a predictive modeling of factors affecting acceptance of wearables by athletes, and highlighting the ethical implications of athlete's adoption of wearables.

Keywords

References

  1. Ahani, A., Rahim, N. Z. A., and Nilashi, M. (2017). Forecasting social CRM adoption in SMEs: A combined SEM-neural network method. Computers in Human Behavior, 75, 560-578. doi:10.1016/J.CHB.2017.05.032.
  2. Al-Shihi, H., Sharma, S. K., and Sarrab, M. (2018). Neural network approach to predict mobile learning acceptance. Education and Information Technologies, 23(5), 1805-1824. doi:10.1007/s10639-018-9691-9.
  3. Arnold, J. F., and Sade, R. M. (2017). Wearable technologies in collegiate sports: The ethics of collecting biometric data from student-athletes. The American Journal of Bioethics: AJOB, 17(1), 67-70. doi:10.1080/15265161.2016.1251648.
  4. Bai, J., Shen, L., Sun, H., and Shen, B. (2017). Physiological informatics: Collection and analyses of data from wearable sensors and smartphone for healthcare. In Healthcare and big data management (pp. 17-37). Springer. doi:10.1007/978-981-10-6041-0_2.
  5. Banerjee, S.(Sy), Hemphill, T. A., and Longstreet, P. (2017). Is IOT a threat to consumer consent? The perils of wearable devices health data exposure. SSRN Electronic Journal. doi:10.2139/ssrn.3038872.
  6. Blumenthal, J., Wilkinson, A., and Chignell, M. (2018). Physiotherapists' and physiotherapy students' perspectives on the use of mobile or wearable technology in their practice. Physiotherapy Canada, 70(3), 251-261. doi:10.3138/ptc.2016-100.e.
  7. Chang, H. S., Lee, S. C., and Ji, Y. G. (2016). Wearable device adoption model with TAM and TTF. International Journal of Mobile Communications, 14(5), 518. doi:10.1504/IJMC.2016.078726.
  8. Chong, A. Y. L. (2013). Predicting m-commerce adoption determinants: A neural network approach. Expert Systems with Applications, 40(2), 523-530. doi:10.1016/J.ESWA.2012.07.068.
  9. Chong, A. Y. L., Liu, M. J., Luo, J., and Keng-Boon, O. (2015). Predicting RFID adoption in healthcare supply chain from the perspectives of users. International Journal of Production Economics, 159, 66-75. doi:10.1016/J.IJPE.2014.09.034.
  10. Connaway, L., and Powell, R. (2010). Basic research methods for librarians. ABC-CLIO. Retrieved form https://books.google.com/books?hl=en&lr=&id=_7ySMR0T9uYC&oi=fnd&pg=PP1&dq=Basic+Research+Methods+for+Librarians,+Fifth+Edition&ots=5KBEm0m6pQ&sig=Yun4n1QofCE2_xEQu7ZlcTA4RVg.
  11. Cummins, P. (2017). TBI and NFL culture: Can players autonomously refuse biometric monitoring? The American Journal of Bioethics, 17(1), 75-77. doi:10.1080/15265161.2016.1251645.
  12. Curmi, F., Ferrario, M. A., and Whittle, J. (2017). Biometric data sharing in the wild: Investigating the effects on online sports spectators. International Journal of Human-Computer Studies, 105, 56-67. doi:10.1016/J.IJHCS.2017.03.008.
  13. Curtis, D., Shih, E., Waterman, J., Guttag, J., Bailey, J. M., Stair, T., Greenes, R. A., and Ohno-Machado, L. (2008). Physiological signal monitoring in the waiting areas of an emergency room. Proceedings of the 3rd International ICST Conference on Body Area Networks. doi:10.4108/ICST.BODYNETS2008.2968.
  14. Davis, F. (1985). A technology acceptance model for empirically testing new end-user information systems: Theory and results. https://dspace.mit.edu/bitstream/handle/1721.1/15192/14927137-MIT.pdf.
  15. Dehghani, M., Kim, K. J., and Dangelico, R. M. (2018). Will smartwatches last? Factors contributing to intention to keep using smart wearable technology. Telematics and Informatics, 35(2), 480-490. doi:10.1016/j.tele.2018.01.007.
  16. Evans, R., McNamee, M., and Guy, O. (2017). Ethics, nanobiosensors and elite sport: The need for a new governance framework. Science and Engineering Ethics, 23(6), 1487-1505. doi:10.1007/s11948-016-9855-1.
  17. Fensli, R., Pedersen, P. E., Gundersen, T., and Hejlesen, O. (2008). Sensor acceptance model-measuring patient acceptance of wearable sensors. Methods of Information in Medicine. doi:10.3414/ME9106.
  18. Fornell, C., and Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39. doi:10.2307/3151312.
  19. Gaura, E., Kemp, J., and Brusey, J. (2013). Leveraging knowledge from physiological data: On-body heat stress risk prediction with sensor networks. IEEE Transactions on Biomedical Circuits and Systems, 7(6), 861-870. doi:10.1109/TBCAS.2013.2254485.
  20. Green, E. C., and Murphy, E. (2014). Health belief model. In The wiley blackwell encyclopedia of health, illness, behavior, and society (pp. 766-769). John Wiley & Sons, Ltd. doi:10.1002/9781118410868.wbehibs410.
  21. Grispos, G., Glisson, W. B., and Choo, K. K. R. (2017). Medical cyber-physical systems development: A forensics-driven approach. 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), 108-113. doi:10.1109/CHASE.2017.68.
  22. Guest, W., Wild, F., Vovk, A., Lefrere, P., Klemke, R., Fominykh, M., and Kuula, T. (2018). A technology acceptance model for augmented reality and wearable technologies. Journal of Universal Computer Science, 24(2), 192-219. Retrieved form http://www.jucs.org/jucs_24_2/a_technology_acceptance_model/jucs_24_02_0192_0219_guest.pdf.
  23. Haberstroh, T. (2017). DeAndre's big whoop. ESPN, Retrieved form http://www.espn.com/nba/story/_/id/18801090/deandre-jordan-plays-hidden-device.
  24. Hair, J. F., Black, W. C., Babin, B. J., and Anderson, R. E. (2013). Multivariate data analysis. Pearson Education Limited. Retrieved form https://books.google.fr/books?id=oLCpBwAAQBAJ&dq=multivariate+data+analysis+hair&hl=fr&sa=X&ved=0ahUK Ewjv9ojKv8LeAhUPExoKHUa_D8kQ6AEIMTAB.
  25. Huang, J. C. (2010). Remote health monitoring adoption model based on artificial neural networks. Expert Systems with Applications, 37(1), 307-314. doi:10.1016/J.ESWA.2009.05.063.
  26. Jones, L. E. (2017). Renewable energy integration: Practical management of variability, uncertainty and flexibility in power grids. Academic Press.
  27. Karkazis, K., and Fishman, J. R. (2017). Tracking U.S. professional athletes: The ethics of biometric technologies. The American Journal of Bioethics, 17(1), 45-60. doi:10.1080/15265161.2016.1251633.
  28. Kim, T., and Chiu, W. (2018). Consumer acceptance of sports wearable technology: The role of technology readiness. International Journal of Sports Marketing and Sponsorship, 20(1), 109-126. doi:10.1108/IJSMS06-2017-0050.
  29. Kingsford, K. M., Fengli, Z., and Komlan, G. (2017). Patient knowledge and data privacy in healthcare records system. 2017 2nd International Conference on Communication Systems, Computing and IT Applications(CSCITA), 154-159. doi:10.1109/CSCITA.2017.8066543.
  30. Lee, L., Lee, J., Egelman, S., and Wagner, D. (2016). Information disclosure concerns in the age of wearable computing. NDSS Workshop on Usable Security, 1. doi:10.14722/usec.2016.23006.
  31. Leong, L. Y., Hew, T. S., Tan, G. W. H., and Ooi, K. B. (2013). Predicting the determinants of the NFC-enabled mobile credit card acceptance: A neural networks approach. Expert Systems with Applications, 40(14), 5604-5620. doi:10.1016/J.ESWA.2013.04.018.
  32. Loshin, D. (2012). Business intelligence: The savvy manager's guide. Morgan Kaufmann. Retrieved form https://books.google.fr/books?hl=en&lr=&id=WLv2Vj2QmL4C&oi=fnd&pg=PP1&dq=Business+intelligence+:+the+savvy+manager%27s+guide&ots=UDmQRbzAl0&sig=n5icnqMqdT_bEZ77V-_RPZZnswk&redir_esc=y#v=onepage&q=Businessintelligence%3Athesavvymanager's guide&f=false.
  33. Luna, R., Rhine, E., Myhra, M., Sullivan, R., and Kruse, C. S. (2016). Cyber threats to health information systems: A systematic review. Technology and Health Care, 24(1), 1-9. doi:10.3233/THC-151102.
  34. Lunney, A., Cunningham, N. R., and Eastin, M. S. (2016). Wearable fitness technology: A structural investigation into acceptance and perceived fitness outcomes. Computers in Human Behavior, 65, 114-120. doi:10.1016/j.chb.2016.08.007.
  35. Meghani, D., and Geetha, S. (2016). ECG steganography to secure patient data in an e-healthcare system. Proceedings of the ACM Symposium on Women in Research 2016-WIR '16, 66-70. doi:10.1145/2909067.2909078.
  36. Mnjama, J., Foster, G., and Irwin, B. (2017). A privacy and security threat assessment framework for consumer health wearables. 2017 Information Security for South Africa(ISSA), 66-73. doi:10.1109/ISSA.2017.8251776.
  37. Moore, G. C., and Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3), 192-222. doi:10.1287/isre.2.3.192.
  38. Pfeiffer, J., Von Entress-Fursteneck, M., Urbach, N., and Buchwald, A. (2016). Quantify-me: Consumer acceptance of wearable self-tracking devices. https://eref.uni-bayreuth.de/32345/.
  39. Priyadarshinee, P., Raut, R. D., Jha, M. K., and Gardas, B. B. (2017). Understanding and predicting the determinants of cloud computing adoption: A two staged hybrid SEM-Neural networks approach. Computers in Human Behavior, 76, 341-362. doi:10.1016/J.CHB.2017.07.027.
  40. Rahimi, B., Nadri, H., Lotfnezhad Afshar, H., and Timpka, T. (2018). A systematic review of the technology acceptance model in health informatics. Applied Clinical Informatics, 9(3), 604-634. doi:10.1055/s-0038-1668091.
  41. Rajendra Kumar, C. (2008). Research methodology. APH Pub. Corp.
  42. Raut, R. D., Priyadarshinee, P., Gardas, B. B., and Jha, M. K. (2018). Analyzing the factors influencing cloud computing adoption using three stage hybrid SEM-ANN-ISM (SEANIS) approach. Technological Forecasting and Social Change, 134, 98-123. doi:10.1016/J.TECHFORE.2018.05.020.
  43. Rivero-Garcia, A., Santos-Gonzalez, I., Hernandez-Goya, C., Caballero-Gil, P., and Yung, M. (2017). Patients' data management system protected by identity-based authentication and key exchange. Sensors, 17(4), 733. doi:10.3390/s17040733.
  44. Roberts, J. L., Cohen, I. G., Deubert, C. R., and Lynch, H. F. (2017). The legality of biometric screening of professional athletes. The American Journal of Bioethics, 17(1), 65-67. doi:10.1080/15265161.2016.1251647.
  45. Rovell, D. (2017). MLB approves on-field biometric monitoring device. ESPN, Retrieved form http://www.espn.com/mlb/story/_/id/18835843/mlb-approves-field-biometric-monitoring-device.
  46. Saheb, T. (2018). Big data analytics in the context of internet of things and the emergence of real-time systems: A systematic literature review. Int. J. High Performance Systems Architecture, 8(2), 34-50. doi:10.1504/IJHPSA.2018.10015191.
  47. Saheb, T. (2020). An empirical investigation of the adoption of mobile health applications: Integrating big data and social media services. Health and Technology, 10(5), 1063-1077. doi:10.1007/s12553-020-00422-9.
  48. Saheb, T., and Izadi, L. (2019). Paradigm of IoT big data analytics in the healthcare industry: A review of scientific literature and mapping of research trends. Telematics and Informatics, 41, 70-85. doi:10.1016/J.TELE.2019.03.005.
  49. Saheb, T., and Saheb, M. (2019). Analyzing and visualizing knowledge structures of health informatics from 1974 to 2018: A bibliometric and social network analysis. Healthcare Informatics Research, 25(2), 61-72. https://doi.org/10.4258/hir.2019.25.2.61.
  50. Saheb, T., and Saheb, T. (2020). Understanding the development trends of big data technologies: An analysis of patents and the cited scholarly works. Journal of Big Data, 7, 12. doi:10.1186/s40537-020-00287-9.
  51. Sergueeva, K., and Shaw, N. (2016). Wearable technology in hospitals: Overcoming patient concerns about privacy. International Conference on HCI in Business, Government, and Organizations, 446-456. doi:10.1007/978-3-319-39399-5_42.
  52. Shmueli, G., and Koppius, O. R. (2011). Predictive analytics in information systems research. MIS Quarterly, 35(3), 553-572. doi:10.2307/23042796.
  53. Song, J., Kim, J., and Cho, K. (2018). Understanding users' continuance intentions to use smart-connected sports products. Sport Management Review, 21(5), 477-490. doi:10.1016/J.SMR.2017.10.004.
  54. Spagnolli, A., Guardigli, E., Orso, V., Varotto, A., and Gamberini, L. (2014). Measuring user acceptance of wearable symbiotic devices: Validation study across application scenarios. International Workshop on Symbiotic Interaction, 87-98. doi:10.1007/978-3-319-13500-7_7.
  55. Talukder, M. S., Chiong, R., Bao, Y., and Hayat Malik, B. (2018). Acceptance and use predictors of fitness wearable technology and intention to recommend. Industrial Management & Data Systems, 119(1), 170-188. doi:10.1108/IMDS-01-2018-0009.
  56. Tan, G. W. H., Ooi, K. B., Leong, L. Y., and Lin, B. (2014). Predicting the drivers of behavioral intention to use mobile learning: A hybrid SEM-Neural Networks approach. Computers in Human Behavior, 36, 198-213. doi:10.1016/J.CHB.2014.03.052.
  57. Thilakanathan, D., Chen, S., Nepal, S., Calvo, R., and Alem, L. (2014). A platform for secure monitoring and sharing of generic health data in the Cloud. Future Generation Computer Systems, 35, 102-113. doi:10.1016/j.future.2013.09.011.
  58. Tu, J. V. (1996). Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Journal of Clinical Epidemiology, 49(11), 1225-1231. doi:10.1016/S0895-4356(96)00002-9.
  59. Xu, J., Cooke, F. L., Gen, M., and Ahmed, S. E. (2018). Proceedings of the Twelfth International Conference on Management Science and Engineering Management. Springer International Publishing. Retrieved form https://books.google.fr/books/about/Proceedings_of_the_Twelfth_International.html?id=UPDhtgEACAAJ&redir_esc=y.
  60. Yang, H., Yu, J., Zo, H., and Choi, M. (2016). User acceptance of wearable devices: An extended perspective of perceived value. Telematics and Informatics, 33(2), 256-269. doi:10.1016/j.tele.2015.08.007.