References
- 김진홍, 안희동, "코로나 불황 속 상반된 중고시장의 흥행요인 분석", 한국정보처리학회 학술대회논문집, 제27권, 제2호, 2020, pp. 151-152.
- 김하정, 조지영, 곽영태, "블록체인을 활용한 P2P 중고거래 플랫폼", 한국정보과학회 학술발표논문집, 2019, pp. 1645-1647.
- 더치트, "피해 사례통계", 2021, accessed Mar 28. 2021, Retrieved from https://thecheat.co.kr/rb/?mod=_statistics
- 문옥영, 한국어 진술서에서 책임회피 시 나타나는 거짓의 언어․심리적 특징 (석사학위논문), 경기대학교 일반대학원, 수원, 2011.
- 이경남, 전계형, "블록체인을 이용한 중고거래 플랫폼 개선방안 연구", 디지털융복합연구, 제16권, 제9호, 2018, pp. 133-145. https://doi.org/10.14400/JDC.2018.16.9.133
- 이나은, 이상원, "컴퓨터 기반 매개 커뮤니케이션 내 준 언어적 신호에 대한 탐색적 연구", 한국 HCI 학회 학술대회, 2017, pp. 746-749.
- 이동은, "우리의 지갑을 노리는 해커, 사이버 사기의 진화", KISO 저널, 제35권, 2019, pp. 52-60.
- 이보한, 나종연, "소비자 간 거래 플랫폼에서의 신뢰의 구성과 형성요인", 소비자학연구, 제31권, 제3호, 2020, pp. 167-191. https://doi.org/10.35736/JCS.31.3.8
- 이석준, 거짓 진술에서 SCAN의 은폐 탐지율에 관한 연구 (석사학위논문), 경기대학교 일반대학원, 수원, 2015.
- 이세정, 거짓말 행동 특징에 대한 신념: 軍수사관 중심으로 (석사학위논문), 경기대학교 행정.사회복지대학원, 경기도, 2018.
- 조유빈, "시장 규모 20조, 중고장터의 '이유있는' 변신", 시사저널, 2020. 3. 5, Retrieved from https://www.sisajournal.com/news/articleView.html?idxno=196345.
- 황현정, 문현수, 이영석, "온라인 중고시장에 서 판매글 신뢰도 분석", 한국정보과학회 학술발표논문집, 2017, pp. 1853-1855.
- Akehurst, L., G. Kohnken, A. Vrij, and R. Bull, "Lay persons' and police officers' beliefs regarding deceptive behaviour", Applied Cognitive Psychology, Vol.10, No.6, 1996, pp. 461-471. https://doi.org/10.1002/(SICI)1099-0720(199612)10:6<461::AID-ACP413>3.0.CO;2-2
- Barse, E. L., H. Kvarnstrom, and E. Jonsson, "Synthesizing test data for fraud detection systems", Paper presented at the Proceedings of the 19th Annual Computer Security Applications Conference, Las Vegas, USA, 2003.
- Bond Jr, C. F. and B. M. DePaulo, "Accuracy of deception judgments", Personality and social psychology Review, Vol.10, No.3, 2006, pp. 214-234. https://doi.org/10.1207/s15327957pspr1003_2
- Brown, P. F., S. A. Della Pietra, V. J. Della Pietra, J. C. Lai, and R. L. Mercer, "An estimate of an upper bound for the entropy of English", Computational Linguistics, Vol.18, No.1, 1992, pp. 31-40.
- Chang, J., S. Gerrish, C. Wang, J. Boyd-Graber, and D. Blei, "Reading tea leaves: How humans interpret topic models", Advances in Neural Information Processing Systems, Vol.22, 2009, pp. 288-296.
- Chen, T. and C. Guestrin, "Xgboost: A scalable tree boosting system", Paper presented at the Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, New York, USA, 2016.
- Chua, C. E. H. and J. Wareham, "Fighting internet auction fraud: An assessment and proposal", Computer, Vol.37, No.10, 2004, pp. 31-37. https://doi.org/10.1109/MC.2004.165
- de Roux, D., B. Perez, A. Moreno, M. D. P. Villamil, and C. Figueroa, "Tax fraud detection for under-reporting declarations using an unsupervised machine learning approach", Paper presented at the Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, New York, USA, 2018.
- Dimoka, A., Y. Hong, and P. A. Pavlou, "On product uncertainty in online markets: Theory and evidence", MIS Quarterly, Vol.36, No.2, 2012, pp. 395-426. https://doi.org/10.2307/41703461
- Ekman, P. and M. O'Sullivan, "Who can catch a liar?", American Psychologist, Vol.46, No.9, 1991, pp. 913-920. https://doi.org/10.1037/0003-066X.46.9.913
- Fanning, K., K. O. Cogger, and R. Srivastava, "Detection of management fraud: A neural network approach", Intelligent Systems in Accounting, Finance and Management, Vol.4, No.2, 1995, pp. 113-126. https://doi.org/10.1002/j.1099-1174.1995.tb00084.x
- Fernando, A. G., B. Sivakumaran, and L. Suganthi, "Comparison of perceived acquisition value sought by online second-hand and new goods shoppers", European Journal of Marketing, Vol.52, No.7/8, 2018, pp. 1412-1438. https://doi.org/10.1108/EJM-01-2017-0048
- Ford, B. J., H. Xu, and I. Valova, "A real-time self-adaptive classifier for identifying suspicious bidders in online auctions", The Computer Journal, Vol.56, No.5, 2013, pp. 646-663. https://doi.org/10.1093/comjnl/bxs025
- Ghosh, S. and D. L. Reilly, "Credit card fraud detection with a neural-network", Paper presented at the Proceedings of the 27th Hawaii International Conference, Wailea, USA, 1994.
- Gupta, A., "The evolution of fraud: Ethical implications in the age of large-scale data breaches and widespread artificial intelligence solutions deployment", International Telecommunication Union Journal, Vol.1, 2018, pp. 1-7.
- Han, H., W.-Y. Wang, and B.-H. Mao, "Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning", Paper presented at the Proceedings of the International Conference on Intelligent Computing, Hefei, China, 2005.
- Hart, C. L., L. P. Hudson, D. G. Fillmore, and J. D. Griffith, "Managerial beliefs about the behavioral cues of deception", Individual Differences Research, Vol.4, No.3, 2006, pp. 176-183.
- Jones, K. S., "A statistical interpretation of term specificity and its application in retrieval", Journal of Documentation, Vol.28, No.1, 1972, pp. 11-21. https://doi.org/10.1108/eb026526
- Kalman, Y. M. and D. Gergle, "CMC cues enrich lean online communication: The case of letter and punctuation mark repetitions", Paper presented at the Proceedings of the 5th Mediterranean Conference on Information Systems, Tel Aviv, Israel, 2010.
- KOTRA, "중국 중고시장 성장", 2020, Retrieve d from https://news.kotra.or.kr/user/globalBbs/kotranews/782/globalBbsDataView.do?setIdx=243&dataIdx=179992.
- Lemel, R., "C2C E-comerce: The state of academic research in disposing goods online", Copyright 2020 by Institute for Global Business Research, Nashville, TN, USA, 12, 2020.
- Li, Y. and L. Chen, "Risk evaluation for C2C e-commerce via an improved credit counting method", Internet Technology Letters, Vol.222, No.3, 2020.
- Liebman, N. and D. Gergle, "It's (Not) simply a matter of time: The relationship between CMC cues and interpersonal affinity", Paper presented at the Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing, 2016.
- Lin, J. W., M. I. Hwang, and J. D. Becker, "A fuzzy neural network for assessing the risk of fraudulent financial reporting", Managerial Auditing Journal, Vol.18, No.8, 2003, pp. 657-665. https://doi.org/10.1108/02686900310495151
- Little, B. B., W. L. Johnston Jr, A. C. Lovell, R. M. Rejesus, and S. A. Steed, "Collusion in the US crop insurance program: Applied data mining", Paper presented at the Proceedings of the 2002 SIAM International Conference on Data Mining, 2002.
- Luhn, H. P., "A statistical approach to mechanized encoding and searching of literary information", IBM Journal of Research and Development, Vol.1, No.4, 1957, pp. 309-317. https://doi.org/10.1147/rd.14.0309
- Lundberg, S. and S.-I. Lee, "A unified approach to interpreting model predictions", arXiv preprint arXiv:1705.07874, 2017.
- Maes, S., K. Tuyls, B. Vanschoenwinkel, and B. Manderick, "Credit card fraud detection using Bayesian and neural networks", Paper presented at the Proceedings of the 1st International Naiso Congress on Neuro Fuzzy Technologies, 2002.
- Newman, D., J. H. Lau, K. Grieser, and T. Baldwin, "Automatic evaluation of topic coherence", Paper presented at the Proceedings of the 2010 Annual Conference, 2010.
- Newman, M. L., J. W. Pennebaker, D. S. Berry, and J. M. Richards, "Lying words: Predicting deception from linguistic styles", Personality and Social Psychology Bulletin, Vol.29, No.5, 2003, pp. 665-675. https://doi.org/10.1177/0146167203029005010
- Rasheed, L. O. and A. Olukemi, "Reputation system for fraud detection in nigerian consumer-to-consumer e-commerce", Journal of Computer Science, Vol.7, No.2, 2019, pp. 49-60. https://doi.org/10.15640/jcsit.v7n2a6
- Shapley, L. S., Notes on the N-person Game--II: The Value of an N-person Game, Rand Corporation, 1951.
- Sinayobye, J. O., F. Kiwanuka, and S. K. Kyanda, "A state-of-the-art review of machine learning techniques for fraud detection research", Paper presented at the Proceedings of the 2018 Symposium on Software Engineering in Africa, 2018.
- Smith, N., Reading between the Lines: An Evaluation of the Scientific Content Analysis Technique (SCAN), London, England: Home Office, 2001.
- Tsang, S., Y. S. Koh, G. Dobbie, and S. Alam, "Detecting online auction shilling frauds using supervised learning", Expert Systems with Applications, Vol.41, No.6, 2014, pp. 3027-3040. https://doi.org/10.1016/j.eswa.2013.10.033
- Vrij, A., Detecting Lies and Deceit: Pitfalls and Opportunities, New Jersey, USA: John Wiley & Sons, 2008.
- Vrij, A., K. Edward, and R. Bull, "People's insight into their own behaviour and speech content while lying", British Journal of Psychology, Vol.92, No.2, 2001, pp. 373-389. https://doi.org/10.1348/000712601162248
- Wang, Y. and W. Xu, "Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud", Decision Support Systems, Vol.105, 2018, pp. 87-95. https://doi.org/10.1016/j.dss.2017.11.001
- Xue, H.-Y. and D.-H. Yang, "Implementing circular consumption by means of second-hand goods market", Paper presented at the Proceedings of the 2010 International Conference on Management and Service Science, 2010.
- Yamamoto, H. and H. Ohshima, "Proactive or reactive? Platform governance strategy in C2C marketplace", Paper presented at the Proceedings of the Pacific Asia Conference on Information Systems (PACIS), 2017.
- Yoshida, T. and H. Ohwada, "Shill bidder detection for online auctions", Paper presented at the Proceedings of the Pacific Rim International Conference on Artificial Intelligence, 2010.
- Zainuddin, A., J. Junaidi, and R. D. Putra, "Design of e-commerce payment system at tokopedia online shopping site, Aptisi Transactions On Management, Vol.1, No.2, 2017, pp. 143-155. https://doi.org/10.33050/atm.v1i2.666
- Zuckerman, M., B. M. DePaulo, and R. Rosenthal, "Verbal and nonverbal communication of deception", In Advances in experimental social psychology (Vol.14, pp. 1-59). Amsterdam, Netherlands: Elsevier, 1981.
- Strumbelj, E. and I. Kononenko, "Explaining prediction models and individual predictions with feature contributions", Knowledge and InformaTion Systems, Vol.41, No.3, 2014, pp. 647-665. https://doi.org/10.1007/s10115-013-0679-x