참고문헌
- Goncalves, G., Grasso, V., Barquinha, P., Pereira, L., Elamurugu, E., Brignone, M., Martins, R., Lambertini, V., and Fortunato, E., 2011, "Role of room temperature sputtered high conductive and high transparent indium zinc oxide film contacts on the performance of orange, green, and blue organic light emitting diodes", Plasma Process Polym. 8(4), 340-345. https://doi.org/10.1002/ppap.201000149
- Addonizio, M.L., Gambale, E. and Antonaia, A., 2020, "Microstructure evolution of room-temperature-sputtered ITO films suitable for silicon heterojunction solar cells", Cur. Appl. Phys. 20 (8), 953-960. https://doi.org/10.1016/j.cap.2020.06.007
- Hosono, H., 2007, "Recent progress in transparent oxide semiconductors: Materials and device application", Thin Solid Films 515(15), 6000-6014. https://doi.org/10.1016/j.tsf.2006.12.125
- Sato, Y., Ashida, T., Oka, N., and Shigesato, Y., 2010, "Carrier density dependence of optical band gap and work function in Sn-doped In2O3 films", Appl. Phys. Express, 3(6), 061101. https://doi.org/10.1143/APEX.3.061101
- Gangwar, A.K., Godiwal, R., Jaiswal, J., Baloria, V., Pal, P., Gupta, G., and Singh, P., 2020, "Magnetron configurations dependent surface properties of SnO2 thin films deposited by sputtering process", Vacuum 177, 109353. https://doi.org/10.1016/j.vacuum.2020.109353
- Park, H.S., Hussain, S.Q., Velumani, S., Le, A.H.T., Ahn, S., Kim, S., and Yi, J., 2015, "Influence of working pressure on the structural, optical and electrical properties of sputter deposited AZO thin films", Mater. Sci. Semicon. Proc. 37, 29-36. https://doi.org/10.1016/j.mssp.2014.12.076
- Ko, Y., Kim, Y.R., Jang, H., Lee, C., Kang, M.G., and Jun, Y., 2017, "Electrodeposition of SnO2 on FTO and its application in planar heterojunction perovskite solar cells as an electron transport layer", Nanoscale Res. Lett., 12, 498. https://doi.org/10.1186/s11671-017-2247-x
- Malik, O., and Hidalga-Wade, F., 2017, "Sputtered indium tin oxide films for optoelectronic applications", Optoelectronics-Advanced Device Structures, https://www.intechopen.com/books/optoelectronics-advanced-device-structures/sputtered-indium-tin-oxide-films-for-optoelectronic-applications.
- Maki, K., Komiya, N., and Suzuki, A., 2015, "Fabrication of thin films of ITO films by aerosol CVD", Thin Solid Films, 445 (2), 224-228. https://doi.org/10.1016/j.tsf.2003.08.021
- Yamaguchi, M., Ide-Ektessabi, A., Nomura, H., and Yasui, N., 2004, "Characteristics of indium tin oxide thin films prepared using electron beam evaporation", Thin Solid Films 447-448, 115-118. https://doi.org/10.1016/j.tsf.2003.09.033
- Gao, Y., Zhao, G., Duan, Z., and Ren, Y., 2014, "Preparation of ITO films using a pyrolysis solution containing an acetylacetone chelating agent", Mater. Sci-Poland, 32, 66-70. https://doi.org/10.2478/s13536-013-0159-8
- He, L., and Tjong, S.C., 2016, "Nanostructured transparent conductive films: Fabrication, characterization and applications", Mater. Sci. Eng. R. Rep. 109, 1-101. https://doi.org/10.1016/j.mser.2016.08.002
- Park, H., Kim, D., Cho, E.-C., Hussain, S.Q., Park, J., Lim, D., Kim, S., Dutta, S., Kumar, M., Kim, Y., et al., 2020, "Effect on the reduction of the barrier height in rear-emitter silicon heterojunction solar cells using Ar plasma-treated ITO film", 20(1), 219-225. https://doi.org/10.1016/j.cap.2019.09.009
- Cao, W., Li, J., Chen, H., and Xue, J., 2014, "Transparent electrodes for orgainc optoelectronic devices: a review", SPIE J. Photon. Energy, 4(1), 040990. https://doi.org/10.1117/1.JPE.4.040990
- Le, A.H.T. Dao, V.A., Pham, D.P., Kim, S., Dutta, S., Nguyen, C.P.T., Lee, Y., Kim, Y., and Yi, J., 2019, "Damage to passivation contact in silicon heterojunction solar cells by ITO sputtering under various plasma exciton modes", Sol. Energy Mater. Sol. Cells, 192, 36-43. https://doi.org/10.1016/j.solmat.2018.12.001
- Calnan, S., and Tiwari, A.N., 2010, "High mobility transparent conducting oxides for thin film solar cells", 518(7), 1839-1849. https://doi.org/10.1016/j.tsf.2009.09.044
- Koida, T., Ueno, Y., and Shibata, H., 2018, "In2O3-based transparent conducting oxide films with high electron mobility fabricated at low process temperatures", Phys. Status Solidi A, 215(7), 1700506. https://doi.org/10.1002/pssa.201700506
- Han, C., Mazzarella, L., Zhao, Y., Yang, G., Procel, P., Tijssen, M., Montes, A., Spitaleri, L., Gulino, A., and Zhang, X., et al., 2019, "High-mobility hydrogenated fluorine-doped indium oxide film for passivating contacts c-Si Solar cells", ACS Appl. Mater. Interfaces 11(49), 45586-45595. https://doi.org/10.1021/acsami.9b14709
- Huang, W., Shi, J., Liu, Y., Meng, F., and Liu, Z., 2020, "Effect of crystalline structure on optical and electrical properties of IWOH films fabricated by low-damage reactive plasma deposition at room temperature", J. Alloys Compd. 843, 155151. https://doi.org/10.1016/j.jallcom.2020.155151
- Morales-Masis, M., Rucavado, E., Monnard, R., Barraud, L., Holovsky, J., Despeisse, M., Boccard, M., and Ballif, C., 2018, "Highly conductive and broadband transparent Zr-doped In2O3 as front electrode for solar cells", IEEE J. Photovolt. 8(5), 1202-1207. https://doi.org/10.1109/jphotov.2018.2851306
- Grew, B., Bowers, J.W., Lisco, F., Arnou, N., Walls, J.M., and Upadhyaya, H.M., 2014, "High mobility titanium-doped indium oxide for use in tandem solar cells deposited via pulsed DC magnetron sputtering", Energy Procedia 60, 148-155. https://doi.org/10.1016/j.egypro.2014.12.357
- Morales-Masis, M., Martin De Nicolas, S., Holovsky, J., De Wolf, S., and Ballif, C., 2015, "Low-temperature high mobility amorphous IZO for silicon heterojunction solar cells", IEEE J. Photovolt. 5(5), 1340-1347. https://doi.org/10.1109/JPHOTOV.2015.2450993
- Dey, K., 2018, "High mobility and highly transparent cerium doped indium oxide films deposited by magnetron sputtering for photovoltaic applications", Master thesis, National University of Singapore.
- Sahli, F., Werner, J., Kamino, B.A., Brauninger, M., Monnard, R., Paviet-Salomon, B., Barraud, L., Ding, L., Diaz Leon, J.J., Sacchetto, D., et al., 2018, "Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency", Nat. Mater. 17, 820-826. https://doi.org/10.1038/s41563-018-0115-4
- Aydin, E., De Bastiani, M., Yang, X., Sajjad, M., Aljamaan, F., Smirnov, Y., Hedhili, M.N., Liu, W., Allen, T.G., Xu, L., et al., 2019, "Zr-doped indium oxide (IZRO) transparent electrodes for perovskite-based tandem solar cells", Adv. Funct. Mater. 29(25), 1901741. https://doi.org/10.1002/adfm.201901741
- Jost, M., Kohnen, E., Morales-Vilches, A.B., Lipovsek, B., Jager, K., Macco, B., Al-Ashouri, A., Krc, J., Korte, L., Rech, B., et al., 2018, "Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield", Energy Environ. Sci. 11, 3511-3523. https://doi.org/10.1039/C8EE02469C
- Jost, M., Kegelmann, L., Korte, L. and Albrecht, S., 2020, "Monolithic perovskite tandem solar cells: A review of the present status and advanced characterization methods toward 30% efficiency", Adv. Energy Mater. 10, 1904102. https://doi.org/10.1002/aenm.201904102