References
- M.A. Abdo, H.A. Wahash and S.K. Panchal, Positive solutions of a fractional differential equation with integral boundary conditions, J. Appl. Math. Comput. Mech., 17(3) (2018), 5-15. https://doi.org/10.17512/jamcm.2018.3.01
- A. Ardjouni and A. Djoudi, Positive solutions for first-order nonlinear Caputo-Hadamard fractional differential equations, Kragujevac J. Math., 45(6) (2021), 897-908. https://doi.org/10.46793/KgJMat2106.897A
- A. Ardjouni and A. Djoudi, Existence and uniqueness of positive solutions for first-order nonlinear Liouville-Caputo fractional differential equations, J. Math Sci., 14 (2020) 381-390.
- H. Boulares, A. Ardjouni and Y. Laskri, Positive solutions for nonlinear fractional differential equations, Positivity, 21 (2017), 1201-1212. https://doi.org/10.1007/s11117-016-0461-x
- K. Diethelm, The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer-Verlag: Berlin, Germany, Lecture Notes in Math., 2010, /doi.org/10.1007/978-3-642-14574-2.
- A. Kilbas, H. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
- V. Lakshmikantham and A. Vatsala, Basic theory of fractional differential equations, Nonlinear Analysis: TMA, 69(8) (2008), 2677-2682. https://doi.org/10.1016/j.na.2007.08.042
- V. Lakshmikantham and A. Vatsala, Theory of fractional differential inequalities and applications, Commu. Appl. Anal., Vol-II (2007), 395-402.
- V. Lakshmikantham, Theory of fractional functional differential equations, Nonlinear Analysis: TMA, 69(10) (2008), 3337-3343. https://doi.org/10.1016/j.na.2007.09.025
- M. Li, J. Sun and Y. Zhao, Existence of positive solution for BVP of nonlinear fractional differential equation with integral boundary conditions, Advan. Diff. Equ., 177 (2020). doi.org/10.1186/s13662-020-02618-9
- M. Matar, On existence of positive solution for initial value problem of nonlinear fractional differential equations of order 1 < α ≤ 2, Acta Math. Univ. Comen., 84(1) (2015), 51-57.
- K.S. Miller and B. Ross, An Introduction To The Fractional Calculus And Fractional Differential Equations, Wiley, New York, 1993.
- J.A. Nanware and D.B. Dhaigude, Boundary value problems for differential equations of non-integer order involving Caputo fractional derivative, Advan. Studies Contemp. Math., 24(3) (2014), 369-376.
- J.A. Nanware and G.A. Birajdar, Methods of solving fractional differential equations of order α (0 < α < 1), Bull. the Marathwada Math. Soc., 15(2) (2014), 40-53.
- J.A. Nanware and D. B. Dhaigude, System of initial value problems involving Riemann-Liouville sequential fractional derivative, Commu. Appl. Anal., 22(3) (2018), 353-368.
- J.J. Nieto, A. Ouahab and V. Venktesh, Implicit fractional differential equations via the Liouville-Caputo derivative, Mathematics, 3 (2015), 398-411. https://doi.org/10.3390/math3020398
- I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
- S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, 1993.
- D.R. Smart, Fixed Point Theorems, Cambridge University Press, Cambridge, 1980.
- M. Xu and Z. Han, Positive solutions for integral boundary value problem of two-term fractional differential equations, Bound. Value Probl., (2018), Article number: 100. doi.org/10.1186/s13661-018-1021-z.
- S. Zhang, The existence of a positive solution for a nonlinear fractional differential equation, J. Math. Anal. Appl., 252 (2000), 804-812. https://doi.org/10.1006/jmaa.2000.7123