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Abstract. In this paper, first order nonlinear Liouville-Caputo fractional differential equa-

tions is studied. The existence and uniqueness of a solution are investigated by using Kras-

noselskii and Banach fixed point theorems and the method of lower and upper solutions.

Finally, an example is given to illustrate our results.

1. Introduction

In recent years, theory of fractional differential equations has become an
important investigation area(Kilbas et al. [6], Podlubny [17], Miller and Ross
[12] and Samko et al. [18]). The basic theory for initial value problems for
fractional differential equations involving the Riemann-Liouville and Liouville-
Caputo differential operator was discussed by Diethelm [5]. Many interesting
results of the existence of solutions of various classes of fractional differential
equations involving Riemann-Liouville and Caputo type fractional derivatives
with the initial condition, the integral boundary conditions have been studied
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extensively by several researchers (see [1, 7, 8, 9, 10, 13, 14, 15, 16, 20, 21] and
the references therein).

Recently, Matar [11] used the method of upper and lower solutions and
Schauder and Banach fixed point theorems to obtain the existence and unique-
ness of positive solution for the nonlinear fractional differential equations:{

cDµw(r) = f(r, w(r)), 0 < r ≤ 1,

w(0) = 0, w
′
(0) = ζ > 0,

where cDµ is the standard Caputo fractional derivative of order 1 < µ ≤ 2
and f : [0, 1]× [0,∞)→ [0,∞) is continuous functions.

By employing the upper and lower solutions and Schauder and Banach fixed
point theorems, Boulares et al. [4] investigated existence and uniqueness of
positive solutions for the nonlinear fractional differential equations{

cDµw(r) = f(r, w(r)) + cDµ−1h(r, w(r)), 0 < r ≤ T,
w(0) = ζ1, w

′
(0) = ζ2 > 0,

where cDµ is the standard Liouville-Caputo’s fractional derivative of order
1 < µ ≤ 2, h, f : [0, T ] × [0,∞) → [0,∞) are given continuous functions, h
is nondecreasing on w and ζ2 ≥ h(0, ζ1). Ardjouni et al. [2] studied the exis-
tence and uniqueness of positive solutions for the first-order nonlinear Caputo-
Hadamard fractional differential equations. Also Ardjouni et al. [3] studied
the existence and uniqueness of positive solutions for the first-order nonlinear
Liouville-Caputo fractional differential equations by using the upper and lower
solutions and use Krasnoselskii and Banach fixed point theorems.

Inspired by the aforementioned works, in this paper, using the method
of upper and lower solutions and the Krasnoselskii and Banach fixed point
theorems, we study the existence and uniqueness of solutions of nonlinear
fractional differential equation{

cDµ(w(r)− h(r, w(r))) = f(r, w(r)), 0 < r ≤ T,
w(0) = w0 > h(0, w0) > 0,

(1.1)

where 0 < µ ≤ 1 and h, f : [0, T ]× [0,∞)→ [0,∞) are continuous functions.

The layout of paper is as follows: In Section 2, we introduce some basic
definitions and lemmas that will be used to prove main results. Section 3 is
devoted to existence and uniqueness of solution for the problem (1.1) and we
provide an example to illustrate results.
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2. Preliminaries

Let B = C([0, T ]) be the Banach space of all real-valued continuous func-
tions defined on the compact interval [0, T ], endowed with the norm ‖w‖ =
max

0≤r≤T
|w(r)|.

Let K be a nonempty closed subset of B defined as

K = {w ∈ B : ‖w‖ ≤ l, l > 0} .
Let c, d ∈ R+ with c < d and for any w ∈ [c, d] ⊂ R+, we define the upper

and lower control functions respectively as follows:

M(r, w) = sup
c≤η≤w

f(r, η), m(r, w) = inf
w≤η≤d

f(r, η).

It is obvious that m(r, w) and M(r, w) are monotonic non-decreasing on [c, d]
and m(r, w) ≤ f(r, w) ≤M(r, w).

We give some definitions and their properties for our main results.

Definition 2.1. ([6, 17]) The fractional integral of order µ > 0 of a function
w : R+ → R is given by

Iµw(r) =
1

Γ(µ)

∫ r

0
(r − s)µ−1w(s) ds,

provided the right side is pointwise defined on R+.

Definition 2.2. ([5, 16]) The Liouville-Caputo fractional derivative of order
µ > 0 of a function w : R+ → R is given by

cDµw(r) = In−µwn(r) =
1

Γ(n− µ)

∫ r

0
(r − s)n−µ−1w(n)(s) ds,

where n = [µ] + 1, provided the right side is pointwise defined on R+.

Lemma 2.3. ([6, 17]) Let Re(µ) > 0, w ∈ Cn−1([0,+∞)) and w(n) exists
almost everywhere on any bounded interval of R+. Then

(Iµ cDµ
0w)(r) = w(r)−

n−1∑
k=0

w(k)(0)

k!
rk.

In particular, when 0 < Re(µ) < 1, (Iµ cDµ
0w)(r) = w(r)− w(0).

Lemma 2.4. Let w ∈ C([0, T ]), w
′

and ∂h
∂r exist. Then w(r) is a solution of

(1.1) if and only if

w(r) = w0 − h(0, w0) + h(r, w(r)) +
1

Γ(µ)

∫ r

0
(r − s)µ−1f(s, w(s)) ds. (2.1)
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Proof. Suppose w(r) satisfies (1.1). Then applying Iµ0 to both sides of (1.1),
we have

Iµ[cDµ(w(r)− h(r, w(r)))] = Iµf(r, w(r)), 0 < r ≤ T.

In view of Lemma 2.3 and the initial condition of problem (1.1), we get

w(r) = w0 − h(0, w0) + h(r, w(r)) +
1

Γ(µ)

∫ r

0
(r − s)µ−1f(s, w(s)) ds.

Conversely, suppose that w(r) satisfies equation (2.1). Then applying cDµ

to both sides of equation (2.1), we obtain

cDµw(r) = cDµ[w0 − h(0, w0) + h(r, w(r))

+
1

Γ(µ)

∫ r

0
(r − s)µ−1f(s, w(s)) ds]

= cDµh(r, w(r)) + cDµIµf(r, w(r))

= cDµh(r, w(r)) + f(r, w(r)).

Then cDµ[w(r)− h(r, w(r))] = f(r, w(r)) and the initial condition w(0) = w0

holds. �

Lastly, we state the fixed point theorems which is useful to prove the exis-
tence and uniqueness of a solution of (1.1).

Definition 2.5. Let (B, ‖.‖) be a Banach space and φ : B → B. The operator
φ is a contraction operator if there is an γ ∈ (0, 1) such that u, v ∈ B implying

‖φu− φv‖ ≤ γ ‖u− v‖ .

Theorem 2.6. ([19]) Let E be a nonempty closed convex subset of a Banach
space B and Φ : E → E be a contraction operator. Then there is a unique
w ∈ E with Φw = w.

Theorem 2.7. (Krasnoselskii fixed point theorem, [19]) Let E be a nonempty
closed convex subset of a Banach space B and let P and Q two operators defined
on E with values in B such that Pu + Qv ∈ E, for every pair u, v ∈ E, the
operator P is completely continuous and the operator Q is a contraction.Then
there exist w ∈ E such that w = Pw +Qw.

3. Existence and uniqueness of solution

In this section, first we need to construct two mappings, one is contraction
and other is completely continuous. Now we define the operator Φ : K → B
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by

(Φw)(r) = w0 − h(0, w0) + h(r, w(r))

+
1

Γ(µ)

∫ r

0
(r − s)µ−1f(s, w(s)) ds

= (Pw)(r) + (Qw)(r), (3.1)

where the operator P : K → B is defined as

(Pw)(r) =
1

Γ(µ)

∫ r

0
(r − s)µ−1f(s, w(s)) ds

and the operator Q : K → X is defined as

(Qw)(r) = w(0)− h(0, w0) + h(r, w(r)).

Throughout this paper, we assume that the following conditions hold.

(C1) h, f ∈ C([0, T ]× [0,∞), [0,∞)) and h is non-decreasing on w.
(C2) Let w∗, w∗ ∈ K such that c ≤ w∗ ≤ w∗ ≤ d and satisfying

cDµ(w∗(r)− h(r, w∗(r))) ≥M(r, w∗(r))

and
cDµ(w∗(r)− h(r, w∗(r))) ≤ m(r, w∗(r)),

for any r ∈ [0, T ]. The function w∗ and w∗ are respectively called a
pair of upper and lower solutions for the equation (1.1).

(C3) For u, v ∈ B and r ∈ [0, T ], there exist α ∈ (0, 1) and β < 1 such that

|h(r, u)− h(r, v)| ≤ α ‖u− v‖
and

|f(r, u)− f(r, v)| ≤ β ‖u− v‖ .

We need the following lemmas to establish our results.

Lemma 3.1. Assume that (C1) holds. Then, the operator P : K → B is
completely continuous.

Proof. By (C1), f is a continuous and nonnegative function, we get that P :
K → B is continuous. If the function f : [0, T ]×K → [0,∞) is bounded, then
there exists λ > 0 such that 0 ≤ f(r, w(r)) ≤ λ. Therefore, we obtain

|(Pw)(r)| ≤ 1

Γ(µ)

∫ r

0
(r − s)µ−1 |f(s, w(s))| ds

≤ λ

Γ(µ)

[
(r − s)µ

−µ

]r
0

=
λrµ

Γ(µ+ 1)

≤ λTµ

Γ(µ+ 1)
.
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Hence P (K) is uniformly bounded.
Now we will prove equicontinuity of P . Let w ∈ K, ε > 0, δ > 0 and for

any r1, r2 ∈ [0, T ] with r1 < r2 such that |r2 − r1| < δ. If δ =
[
εΓ(µ+1)

2λ

] 1
µ

, then

we have

|(Pw)(r1)− (Pw)(r2)| ≤ 1

Γ(µ)

∫ r1

0

∣∣(r1 − s)µ−1 − (r2 − s)µ−1
∣∣ |f(s, w(s))| ds

+
1

Γ(µ)

∫ r2

r1

∣∣(r2 − s)µ−1
∣∣ |f(s, w(s)| ds

≤ λ

Γ(µ)

∫ r1

0
[(r1 − s)µ−1 − (r2 − s)µ−1] ds

+
λ

Γ(µ)

∫ r2

r1

(r2 − s)µ−1 ds

=
λ

Γ(µ+ 1)
[rµ1 − r

µ
2 + 2(r2 − r1)µ]

≤ 2λ

Γ(µ+ 1)
(r2 − r1)µ

< ε.

Therefore P (K) is equicontinuous. Then by Arzela-Ascoli theorem, P : K →
B is completely continuous. �

Lemma 3.2. Assume that (C1) and (C3) hold. Then the operator Q : K → B
is contraction.

Proof. By (C1) and initial conditions of problem (1.1), the operator Q : K →
B is continuous. For u, v ∈ K and α ∈ (0, 1), we have

|(Qu)(r)− (Qv)(r)| = |h(r, u(r))− h(r, v(r))| ≤ α ‖u− v‖ .

Hence Q is contraction. �

Theorem 3.3. Assume that (C1) and (C2) hold. Then there exists at least
one solution w(r) ∈ B of the problem (1.1) satisfying w∗(r) ≤ w(r) ≤ w∗(r),
for r ∈ [0, T ].

Proof. Let U = {w ∈ K : w∗(r) ≤ w(r) ≤ w∗(r), r ∈ [0, T ]}, endowed with the
norm ‖w‖ = max

0≤r≤T
|w(r)|. Then we have ‖w‖ ≤ l. Hence U is a bounded,

closed and convex subset of a Banach space B. Moreover, by (C1), the con-
tinuity of h, f implies that the operator Φ defined by (3.1) is continuous on
U. By Lemma 3.1, P : U → K is completely continuous. Also by Lemma 3.2,
Q : U → K is contraction.
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Now, we show that if u(r), v(r) ∈ U , then (Pu)(r) + (Qv)(r) ∈ U . For any
u(r), v(r) ∈ U , we have w∗(r) ≤ u(r), v(r) ≤ w∗(r), then

(Pu)(r) + (Qv)(r) = u0 − h(0, u0) + h(r, v(r))

+
1

Γ(µ)

∫ r

0
(r − s)µ−1f(s, u(s)) ds

≤ u0 − h(0, u0) + h(r, w∗(r))

+
1

Γ(µ)

∫ r

0
(r − s)µ−1M(s, w∗(s)) ds

≤ w∗(r) (3.2)

and

(Pu)(r) + (Qv)(r) = u0 − h(0, u0) + h(r, v(r))

+
1

Γ(µ)

∫ r

0
(r − s)µ−1f(s, u(s)) ds

≥ u0 − h(0, u0) + h(r, w∗(r))

+
1

Γ(µ)

∫ r

0
(r − s)µ−1m(s, w∗(s)) ds

≥ w∗(r). (3.3)

Thus from (3.2) and (3.3), w∗(r) ≤ (Pu)(r) + (Qv)(r) ≤ w∗(r) implying that
(Pu)(r) + (Qv)(r) ∈ U . Hence by Krasnoselskii fixed point theorem, there
exists fixed point w(r) ∈ U such that w(r) = (Pw)(r) + (Qw)(r), r ∈ [0, T ]
in U . Therefore the problem (1.1) has at least one solution w(r) ∈ U and
w∗(r) ≤ w(r) ≤ w∗(r), r ∈ [0, T ]. �

Corollary 3.4. Assume that (C1)− (C3) hold and there exists ζ1, ζ2, ζ3, ζ4

such that

0 < ζ1 ≤ h(r, w) ≤ ζ2 <∞, (r, w(r)) ∈ [0, T ]× [0,+∞) (3.4)

and

0 < ζ3 ≤ f(r, w) ≤ ζ4 <∞, (r, w(r)) ∈ [0, T ]× [0,∞). (3.5)

Then the problem (1.1) has at least one solution w ∈ B. Moreover,

w0−h(0, w0)+ζ1+ζ3
rµ

Γ(µ+ 1)
≤ w(r) ≤ w0−h(0, w0)+ζ2+ζ4

rµ

Γ(µ+ 1)
. (3.6)

Proof. By (3.5) and definition of control functions, we have

ζ3 ≤ m[r, w] ≤M [r, w] ≤ ζ4, (r, w(r)) ∈ [0, T ]× [0,+∞). (3.7)



1018 J. A. Nanware and Madhuri N. Gadsing

Now, we consider the equations

cDµ
0 [w(r)− ζ1] = ζ3, w(0) = w0,

cDµ
0 [w(r)− ζ2] = ζ4, w(0) = w0.

(3.8)

Then, equation (3.8) are equivalent to

w(r) = w0 − h(0, w0) + ζ1 +
ζ3

Γ(µ)

∫ r

0
(r − s)µ−1 ds

= w0 − h(0, w0) + ζ1 + ζ3
rµ

Γ(µ+ 1)

and

w(r) = w0 − h(0, w0) + ζ2 +
ζ4

Γ(µ)

∫ r

0
(r − s)µ−1 ds

= w0 − h(0, w0) + ζ2 + ζ4
rµ

Γ(µ+ 1)
.

Now taking into account (3.4), (3.7) we have

w∗(r) = w0 − h(0, w0) + ζ1 +
ζ3

Γ(µ)

∫ r

0
(r − s)µ−1 ds

≤ w0 − h(0, w0) + h(r, w∗(r)) +
1

Γ(µ)

∫ r

0
(t− s)µ−1m(r, w∗(r)) ds

and

w∗(r) = w0 − h(0, w0) + ζ2 +
ζ4

Γ(µ)

∫ r

0
(r − s)µ−1 ds

≥ w0 − h(0, w0) + h(r, w∗(r)) +
1

Γ(µ)

∫ r

0
(r − s)µ−1M(r, w∗(r)) ds.

Then it is clear that, w∗(r) and w∗(r) are respectively the lower and upper
solutions of equation (3.8). Therefore, an application of Theorem 3.3, yields
that the problem (1.1) has at least one solution w ∈ U ⊂ B and satisfies
equation (3.6). �

Theorem 3.5. Assume that (C1) and (C3) hold and

α+
βTµ

Γ(µ+ 1)
< 1. (3.9)

Then the problem (1.1) has a unique solution w ∈ U .

Proof. It follows from Theorem 3.3 that the problem (1.1) has at least one
solution in U . For uniqueness of solution, we need only to prove that the
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operator Φ : K → B defined in equation (3.1) is a contraction on B. For all
ξ1, ξ2 ∈ U , we have

|Φ(ξ1)− Φ(ξ2)| ≤ |h(r, ξ1(r))− h(r, ξ2(r))|

+
1

Γ(µ)

∫ r

0
(r − s)µ−1 |f(s, ξ1(s))− f(s, ξ2(s))| ds

≤ α |ξ1 − ξ2|+ β |ξ1 − ξ2|
1

Γ(µ)

∫ r

0
(r − s)µ−1 ds

= α |ξ1 − ξ2|+ β |ξ1 − ξ2|
rµ

Γ(µ+ 1)

≤
(
α+

βTµ

Γ(µ+ 1)

)
|ξ1 − ξ2| .

Thus,

‖Φ(ξ1)− Φ(ξ2)‖ ≤
(
α+

βTµ

Γ(µ+ 1)

)
‖ξ1 − ξ2‖ .

Hence by equation (3.9), the operator Φ is a contraction mapping. Then
by contraction mapping principle, we conclude that the problem (1.1) has a
unique solution w ∈ U . �

Example 3.6. We consider the following nonlinear fractional differential equa-
tion: {

cD
1
4

[
w(r)− 1+w(r)

3+w(r)

]
= 1

2+r

[
2 + rw(r)

2+w(r)

]
, 0 < r ≤ 1,

w(0) = 1,
(3.10)

where w0 = 1, T = 1, h(r, w) = 1+w(r)
3+w(r) , f(r, w) = 1

2+r

[
2 + rw(r)

2+w(r)

]
and

h(0, w0) = 1
2 . Since h is non-decreasing on w, lim

w→∞
1+w(r)
3+w(r) = 1,

lim
w→∞

1
2+r

[
2 + rw(r)

1+w(r)

]
= 1 and 1

3 ≤ h(r, w) ≤ 1, 2
3 ≤ f(r, w) ≤ 1, for (r, w) ∈

[0, 1]× [0,∞). Hence from Corollary 3.4, equation (3.10) has a solution which

satisfies w∗(r) ≤ w(r) ≤ w∗(r), where w∗(r) = 3
2 + 4r

1
4

Γ( 1
4

)
, w∗(r) = 5

6 + 8r
1
4

3Γ( 1
4

)

are respectively the upper and lower solutions of (3.10). Also α + βT
1
4

Γ(q) ≈
0.3106 < 1, then by Theorem 3.5 and (3.10) has a unique solution which is
bounded by w∗(r) and w∗(r).
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