DOI QR코드

DOI QR Code

Development of an Input File Preparation Tool for Offline Coupling of DNDC and DSSAT Models

DNDC 지역별 구동을 위한 입력자료 생성 도구 개발

  • Hyun, Shinwoo (Department of Plant Science, Seoul National University) ;
  • Hwang, Woosung (Department of Plant Science, Seoul National University) ;
  • You, Heejin (Department of Plant Science, Seoul National University) ;
  • Kim, Kwang Soo (Department of Plant Science, Seoul National University)
  • 현신우 (서울대학교 식물생산과학부) ;
  • 황우성 (서울대학교 식물생산과학부) ;
  • 유희진 (서울대학교 식물생산과학부) ;
  • 김광수 (서울대학교 식물생산과학부)
  • Received : 2021.01.08
  • Accepted : 2021.02.26
  • Published : 2021.03.30

Abstract

The agricultural ecosystem is one of the major sources of greenhouse gas (GHG) emissions. In order to search for climate change adaptation options which mitigate GHG emissions while maintaining crop yield, it is advantageous to integrate multiple models at a high spatial resolution. The objective of this study was to develop a tool to support integrated assessment of climate change impact b y coupling the DSSAT model and the DNDC model. DNDC Regional Input File Tool(DRIFT) was developed to prepare input data for the regional mode of DNDC model using input data and output data of the DSSAT model. In a case study, GHG emissions under the climate change conditions were simulated using the input data prepared b y the DRIFT. The time to prepare the input data was increased b y increasing the number of grid points. Most of the process took a relatively short time, while it took most of the time to convert the daily flood depth data of the DSSAT model to the flood period of the DNDC model. Still, processing a large amount of data would require a long time, which could be reduced by parallelizing some calculation processes. Expanding the DRIFT to other models would help reduce the time required to prepare input data for the models.

농업 생태계는 주요 온실가스의 배출원 중 하나로, 농경지에서의 온실가스 배출량을 최소화하면서 최적의 수량을 얻기 위한 기후변화 적응옵션을 도출하기 위해서는, 상세한 공간적 규모에서 여러 모형들을 연계하여 구동하는 것이 유리하다. 본 연구에서는 DSSAT 모형과 DNDC 모형을 연계하여 상세한 공간 규모에서 기후변화 영향평가를 수행할 수 있도록 지원하기 위한 도구를 개발하고자 하였다. 객체 지향 언어인 R과 C++을 사용하여 DNDC 모형의 격자형 입력자료를 생성하기 위한 DRIFT (DNDC Regional Input File Tool)을 구현하였다. 기후변화 조건에서 격자별 작물 생육모의를 위해 생성된 DSSAT 모형의 입력자료 및 출력자료를 사용하여 DNDC 모형의 입력자료를 생성하였다. 생성된 입력자료를 사용하여 미래 기후변화 조건에서의 온실가스 배출량을 모의하였다. 입력자료를 생성하는 시간은 격자 지점의 수에 비례하여 증가하였다. 그 중, DSSAT 모형의 담수 깊이 자료를 DNDC 모형의 담수 기간으로 변환하는 과정에서 시간이 비교적 오래 걸렸으나, 그 외의 입력자료를 생성하는 데에는 짧은 시간만이 소요되었다. 본 연구에서는 비교적 적은 지점을 대상으로 하였으나, 대량의 자료를 처리하고자 할 경우 일부 계산과정을 병렬화함으로써 구동시간을 줄일 필요가 있을 것이다. 이후 다른 모형들에 대한 확장을 통해 모형 간 연계를 위한 입력자료 생성에 소요되는 시간을 줄일 수 있을 것이다.

Keywords

References

  1. Ahuja, L. R., L. Ma, and T. A. Howell, 2016: Agricultural system models in field research and technology transfer, CRC press.
  2. Asseng, S., P. Martre, A. Maiorano, R. P. Rotter, G. J. O'Leary, G. J. Fitzgerald, C. Girousse, R. Motzo, F. Giunta, and M. A. Babar, 2019: Climate change impact and adaptation for wheat protein. Global change biology 25(1), 155-173. https://doi.org/10.1111/gcb.14481
  3. Batjes, N. H., 1996: Total carbon and nitrogen in the soils of the world. European journal of soil science 47(2), 151-163. https://doi.org/10.1111/j.1365-2389.1996.tb01386.x
  4. Del Grosso, S. J., A. R. Mosier, W. J. Parton, and D. S. Ojima, 2005: DAYCENT model analysis of past and contemporary soil N2O and net green+ house gas flux for major crops in the USA. Soil and Tillage Research 83(1), 9-24. https://doi.org/10.1016/j.still.2005.02.007
  5. Duxbury, J. M., 1994: The significance of agricultural sources of greenhouse gases. Fertilizer research 38(2), 151-163. https://doi.org/10.1007/BF00748775
  6. Engel, T., and E. Priesack, 1993: Expert-N-A Building Block System of Nitrogen Models as Resource for Advice, Research, Water Management and Policy, Integrated soil and sediment research: a basis for proper protection, Springer, 503-507.
  7. Gilhespy, S. L., S. Anthony, L. Cardenas, D. Chadwick, A. del Prado, C. Li, T. Misselbrook, R. M. Rees, W. Salas, and A. Sanz-Cobena, 2014: First 20 years of DNDC (DeNitrification DeComposition): Model evolution. Ecological modelling 292, 51-62. https://doi.org/10.1016/j.ecolmodel.2014.09.004
  8. Gregorich, E., P. Rochette, A. VandenBygaart, and D. Angers, 2005: Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada. Soil and Tillage Research 83(1), 53-72. https://doi.org/10.1016/j.still.2005.02.009
  9. Hwang, W., Y.-S. Kim, H. Min, J.-G. Kim, K. Cho, and S. Hyun, 2017: Evaluating the applicability of the DNDC model for estimation of CO2 emissions from the paddy field in Korea. Korean Journal of Environmental Biology 35(1), 13-20. https://doi.org/10.11626/KJEB.2017.35.1.013
  10. Hwang, W., M. Park, Y.-S. Kim, K. Cho, W.-K. Lee, and S. Hyun, 2015: Analysis of greenhouse gas emission models and evaluation of their application on agricultural lands in Korea. Ecology and Resilient Infrastructure 2(2), 185-190. https://doi.org/10.17820/eri.2015.2.2.185
  11. Hyun, S., and K. S. Kim, 2017: Estimation of heading date for rice cultivars using ORYZA (v3). Korean Journal of Agricultural and Forest Meteorology 19(4), 246-251. https://doi.org/10.5532/KJAFM.2017.19.4.246
  12. IPCC, 2013: Anthropogenic and Natural Radiative Forcing, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 659-740.
  13. IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)], IPCC, Geneva, Switzerland, 151pp.
  14. Jansson, P.-E., and D. S. Moon, 2001: A coupled model of water, heat and mass transfer using object orientation to improve flexibility and functionality. Environmental Modelling & Software 16(1), 37-46. https://doi.org/10.1016/S1364-8152(00)00062-1
  15. Jeong, H. C., J. S. Lee, E. J. Choi, G. Y. Kim, S. U. Seo, and K. H. So, 2014a: A comparison of the changes of greenhouse gas emissions to the develop country-specific emission factors and scaling factors in agricultural sector.
  16. Jeong, H. C., J. S. Lee, E. J. Choi, G. Y. Kim, S. U. Seo, and K. H. So, 2014b: Evaluation of greenhouse gas emissions using DNDC model from paddy fields of 16 local government levels.
  17. Jiang, R., W. He, W. Zhou, Y. Hou, J. Yang, and P. He, 2019: Exploring management strategies to improve maize yield and nitrogen use efficiency in northeast China using the DNDC and DSSAT models. Computers and Electronics in Agriculture 166, 104988. https://doi.org/10.1016/j.compag.2019.104988
  18. Jones, J. W., G. Hoogenboom, C. H. Porter, K. J. Boote, W. D. Batchelor, L. A. Hunt, P. W. Wilkens, U. Singh, A. J. Gijsman, and J. T. Ritchie, 2003: The DSSAT cropping system model. European Journal of Agronomy 18(3-4), 235-265. https://doi.org/10.1016/S1161-0301(02)00107-7
  19. Kasimir-Klemedtsson, A., L. Klemedtsson, K. Berglund, P. Martikainen, J. Silvola, and O. Oenema, 1997: Greenhouse gas emissions from farmed organic soils: a review. Soil use and management 13, 245-250. https://doi.org/10.1111/j.1475-2743.1997.tb00595.x
  20. Kim, G.-Y., S.-I. Park, B.-H. Song, and Y.-K. Shin, 2002: Emission characteristics of methane and nitrous oxide by management of water and nutrient in a rice paddy soil. Korean Journal of Environmental Agriculture 21(2), 136-143. https://doi.org/10.5338/KJEA.2002.21.2.136
  21. Kim, J., J. Park, S. Hyun, D. H. Fleisher, and K. S. Kim, 2020: Development of an automated gridded crop growth simulation support system for distributed computing with virtual machines. Computers and Electronics in Agriculture 169, 105196. https://doi.org/10.1016/j.compag.2019.105196
  22. Li, C., S. Frolking, and T. A. Frolking, 1992: A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. Journal of Geophysical Research: Atmospheres 97(D9), 9759-9776. https://doi.org/10.1029/92JD00509
  23. Li, C., S. Frolking, and R. Harriss, 1994: Modeling carbon biogeochemistry in agricultural soils. Global biogeochemical cycles 8(3), 237-254. https://doi.org/10.1029/94GB00767
  24. Meijide, A., C. Gruening, I. Goded, G. Seufert, and A. Cescatti, 2017: Water management reduces greenhouse gas emissions in a Mediterranean rice paddy field. Agriculture, ecosystems & environment 238, 168-178. https://doi.org/10.1016/j.agee.2016.08.017
  25. Min, H., M.-S. Kim, J.-G. Kim, and W. Hwang, 2018: DNDC modeling for greenhouse gases emission in rice paddy of South Korea and the effect of flooding management change and RCP 8.5 scenario. Ecology and Resilient Infrastructure 5(3), 189-198. https://doi.org/10.17820/ERI.2018.5.3.189
  26. Myeong, S., 2014: Agriculture under UNFCCC and its policy implications. Journal of Climate Change Research 5(4), 313-321. https://doi.org/10.15531/KSCCR.2014.5.4.313
  27. Parton, W. J., M. Hartman, D. Ojima, and D. Schimel, 1998: DAYCENT and its land surface submodel: description and testing. Global and planetary Change 19(1-4), 35-48. https://doi.org/10.1016/S0921-8181(98)00040-X
  28. Pathak, H., C. Li, and R. Wassmann, 2005: Greenhouse gas emissions from Indian rice fields: calibration and upscaling using the DNDC model.
  29. Qian, B., X. Zhang, W. Smith, B. Grant, Q. Jing, A. J. Cannon, D. Neilsen, B. McConkey, G. Li, and B. Bonsal, 2019: Climate change impacts on Canadian yields of spring wheat, canola and maize for global warming levels of 1.5 C, 2.0 C, 2.5 C and 3.0 C. Environmental Research Letters 14(7), 074005. https://doi.org/10.1088/1748-9326/ab17fb
  30. Raich, J. W., C. S. Potter, and D. Bhagawati, 2002: Interannual variability in global soil respiration, 1980-94. Global Change Biology 8(8), 800-812. https://doi.org/10.1046/j.1365-2486.2002.00511.x
  31. Tian, Z., Y. Niu, D. Fan, L. Sun, G. Ficsher, H. Zhong, J. Deng, and F. N. Tubiello, 2018: Maintaining rice production while mitigating methane and nitrous oxide emissions from paddy fields in China: Evaluating tradeoffs by using coupled agricultural systems models. Agricultural Systems 159, 175-186. https://doi.org/10.1016/j.agsy.2017.04.006
  32. Yoo, B. H., and K. S. Kim, 2017: Preparation of soil input files to a crop model using the Korean soil information system. Korean Journal of Agricultural and Forest Meteorology 19(3), 174-179. https://doi.org/10.5532/KJAFM.2017.19.3.174