References
- S. K. Roy Choudhary, A note on quasi-static thermal deflection of a thin clamped circular plate due to ramp-type heating of a concentric circular region of the upper face, Journal of the Franklin Institute, 296(3) (1973), 213-219. https://doi.org/10.1016/0016-0032(73)90059-8
- K. Grysa and Z. Kozlowski, One-dimensional problems of temperature and heat flux determination at the surfaces of a thermoelastic slab, Part II:, The Numerical Analysis, Nucl. Eng. Des., 74 (1982), 15-24. https://doi.org/10.1016/0029-5493(83)90136-X.
- Y. Ootao, T. Akai, Y. Tanigawa, Three dimentional transient thermal stress analysis of a nonhomogeneous hollow circular cylinder due to a moving heat source in the axial direction, Journal of Thermal Stresses, 18(5) (1995), 497-512. https://doi.org/10.1080/01495739508946317.
- Y. Ootao and Y. Tanigawa, Transient thermoelastic analysis for a functionally graded hollow cylinder, Journal of Thermal Stresses, 29 (2006), 1031-1046. https://doi.org/10.1080/01495730600710356.
- Y. Tanigawa, M. Ishihara, H. Morishita, and R. Kawamura, Theoretical Analysis of Two-Dimensional Thermoelastoplastic Bending Deformation of Plate Subject to Partially Distributed Heat Supply, Trans. JSME, 62(595) (1996).
- M. Ishihara, Y. Tanigawa, R. Kawamura, N. Noda, Theoretical analysis of ther moelastoplastic deformation of a circular plate due to a partially distributed heat supply, Journal of Thermal Stresses, 20 (1997), 203-225. https://doi.org/10.1080/01495739708956099.
- T. K. Chakraborty and T. K. Tar, Defection of a circular plate due to heating of a concentric circular region, J. Appl. Math. Comput., 10(1-2) (2002), 217-226. https://doi.org/10.1007/BF02936219
- M. N. Gaikwad and K. C. Deshmukh, Thermal deflection of an inverse thermoelastic problem in a thin isotropic circular plate, Appl. Math. Model., 29(9) (2005), 797-804. https://doi.org/10.1016/j.apm.2004.10.012.
- N. L. Khobragade and K. C. Deshmukh, An inverse quasi-static thermal deflection problem for a thin clamped circular plate, Journal of Thermal Stresses, 28 (2005), 353-361. https://doi.org/10.1080/01495730590916605.
- K. R. Gaikwad and K. P. Ghadle, Nonhomogeneous heat conduction problem and its thermal deflection due to internal heat generation in a thin hollow circular disk, Journal of Thermal Stresses, 35(6) (2012), 485-498. http://dx.doi.org/10.1080/01495739.2012.671744.
- K. R. Gaikwad, S. G. Khavale, Time fractional heat conduction problem in a thin hollow circular disk and it's thermal deflection, Easy Chair, 1672 (2019), 1-10.
- K. R. Gaikwad and Y. U. Naner, Analysis of transient thermoelastic temperature distribution of a thin circular plate and its thermal deflection under uniform heat generation, Journal of Thermal Stresses, 44(1) (2021), 75-85. https://doi.org/10.1080/01495739.2020.1828009.
- K. R. Gaikwad, Two-dimensional steady-state temperature distribution of a thin circular plate due to uniform internal energy generation, Cogent Mathematics, Taylor and Francis Group, 3(1) (2016), 1-10. http://dx.doi.org/10.1080/23311835.2015.1135720.
- K. R. Gaikwad, Mathematical modelling and its simulation of a quasi-static thermoelastic problem in a semiinfinite hollow circular disk due to internal heat generation, Journal of Korean Society for Industrial and Applied Mathematics, 19(1) (2015), 69--81. DOI: 10.12941/jksiam.2015.19.069
- K. R. Gaikwad, Mathematical modelling of thermoelastic problem in a circular sector disk subject to heat generation, Int. J. Adv. Appl. Math. and Mech., 2(3) (2015), 183-195.
- K. R. Gaikwad and Y. U. Naner, Transient thermoelastic stress analysis of a thin circular plate due to uniform internal heat generation, Journal of the Korean Society for Industrial and Applied Mathematics, 24(3) (2020), 293-303. http://dx.doi.org/10.12941/jksiam.2020.24.293
- K. R. Gaikwad, S. G. Khavale, Generalized theory of magneto-thermo-viscoelastic spherical cavity problem under fractional order derivative: state space approach, Advances in Mathematics: Scientific Journal, 9(11) (2020), 9769--9780. https://doi.org/10.37418/amsj.9.11.86
- K. S. Parihar and S. S. Patil, Transient heat conduction and analysis of thermal stresses in thin circular plate, Journal of Thermal Stresses, 34(4) (2011), 335--351. https://doi.org/10.1080/01495739.2010.550812.
- K. R. Gaikwad, Analysis of thermoelastic deformation of a thin hollow circular disk due to partially distributed heat supply, Journal of Thermal Stresses, vol. 36, no. 3, pp. 207-224, 2013. http://dx.doi.org/10.1080/01495739.2013.765168.
- K. R. Gaikwad., Axi-symmetric thermoelastic stress analysis of a thin circular plate due to heat generation, International Journal of Dynamical Systems and Differential Equations, 9 (2019), pp. 187-202. https://doi.org/10.1504/IJDSDE.2019.100571.
- N. M. Ozisik, Boundary Value Problem of Heat Conduction, International Textbook Company, Scranton, Pennsylvania, (1968), 84-101.
- N. Noda, R.B. Hetnarski, Y. Tanigawa, Thermal Stresses, Second Edition, Taylor and Francis, New York, (2003), 376-387.
- Thomas, L.: Fundamentals of Heat Transfer. Prentice-Hall, Englewood Cliffs, 1980.