DOI QR코드

DOI QR Code

Heme effects of hemin on growth of peridontopathogens

치주병원균의 성장에서의 heme의 영향

  • Yoo, Hyun-Jun (Department of Preventive Dentistry, College of Dentistry, Dankook University) ;
  • Lee, Sung-Hoon (Department of Oral Microbiology and Immunology, College of Dentistry, Dankook University)
  • 유현준 (단국대학교 치과대학 예방치의학교실) ;
  • 이성훈 (단국대학교 치과대학 구강미생물학교실)
  • Received : 2021.03.03
  • Accepted : 2021.03.04
  • Published : 2021.03.31

Abstract

Purpose: The purpose of this study was to investigate effect of heme on periodontopathogens. Materials and Methods: The experiment was performed using 7 types of anaerobic bacteria present in the periodontal pocket. The bacteria were cultured using suitable medium in an anaerobic condition with or without hemin, and the growth of the bacteria was measured every 6 hours by a spectrophotometer. Results: the growth of Porphyromonas gingivalis was different only by the presence or absence of hemin. The growth of other periodontopathogens except Treponema denticola was different in a hemin concentration-dependent manner. The growth of T. denticola was interfered by hemin. Conclusion: Heme may be a factor that leads dysbiosis in the microbial ecosystem of the subgingival plaque and thereby promote a periodontitis-causing environment.

목적: 이 연구의 목적은 치주병원균에 대한 헴의 영향을 살펴보기 위함이다. 연구 재료 및 방법: 치주낭에 존재하는 7종의 혐기성세균을 이용하여 실험을 진행하였다. 세균을 혐기환경에서 배지를 이용하여 hemin의 있고 없음으로 하여 배양을 하였다. 세균의 성장은 매 6시간마다 분광광도계를 이용하여 측정하였다. 결과: 헤민의 존재여부에 따른 성장의 차이는 Porphyromonas gingivalis에서만 관찰되었다. Treponema denticola를 제외한 치주병원균의 성장은 헤민의 농도에 의존적인 것으로 관찰되었다. T. denticola의 성장은 헤민에 의해 방해를 받았다. 결론: 헴은 치은연하 치태의 미생물 생태계에서 미생물분포의 불균형을 유도하여 치주염을 유발하는 환경을 조장할 것이다.

Keywords

References

  1. Dahlen GG. Black-pigmented gram-negative anaerobes in periodontitis. FEMS Immunol Med Microbiol 1993;6:181-92. https://doi.org/10.1111/j.1574-695X.1993.tb00323.x
  2. Socransky SS. Microbiology of periodontal disease - present status and future considerations. J Periodontol 1977;48:497-504. https://doi.org/10.1902/jop.1977.48.9.497
  3. O'Brien-Simpson NM, Veith PD, Dashper SG, Reynolds EC. Antigens of bacteria associated with periodontitis. Periodontol 2000 2004;35:101-34. https://doi.org/10.1111/j.0906-6713.2004.003559.x
  4. Marsh PD. Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res 1994;8:263-71. https://doi.org/10.1177/08959374940080022001
  5. Listgarten MA. The role of dental plaque in gingivitis and periodontitis. J Clin Periodontol 1988;15:485-7. https://doi.org/10.1111/j.1600-051X.1988.tb01019.x
  6. Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol 2012;10:717-25. https://doi.org/10.1038/nrmicro2873
  7. Wijnsma KL, Veissi ST, de Wijs S, van der Velden T, Volokhina EB, Wagener FADTG, van de Kar NCAJ, van den Heuvel LP. Heme as Possible Contributing Factor in the Evolvement of Shiga-Toxin Escherichia coli Induced Hemolytic-Uremic Syndrome. Front Immunol 2020;11:547406. https://doi.org/10.3389/fimmu.2020.547406
  8. Muller-Eberhard U, Fraig M. Bioactivity of heme and its containment. Am J Hematol 1993;42:59-62. https://doi.org/10.1002/ajh.2830420112
  9. Chaudhry SR, Hafez A, Rezai Jahromi B, Kinfe TM, Lamprecht A, Niemela M, Muhammad S. Role of Damage Associated Molecular Pattern Molecules (DAMPs) in Aneurysmal Subarachnoid Hemorrhage (aSAH). Int J Mol Sci 2018;19:2035. https://doi.org/10.3390/ijms19072035
  10. Liu X, Olczak T, Guo HC, Dixon DW, Genco CA. Identification of amino acid residues involved in heme binding and hemoprotein utilization in the Porphyromonas gingivalis heme receptor HmuR. Infect Immun 2006;74:1222-32. https://doi.org/10.1128/IAI.74.2.1222-1232.2006
  11. Rouault TA. Microbiology. Pathogenic bacteria prefer heme. Science 2004;305:1577-8. https://doi.org/10.1126/science.1102975
  12. Al-Qutub MN, Braham PH, Karimi-Naser LM, Liu X, Genco CA, Darveau RP. Hemin-dependent modulation of the lipid A structure of Porphyromonas gingivalis lipopolysaccharide. Infect Immun 2006;74:4474-85. https://doi.org/10.1128/IAI.01924-05
  13. Lee HR, Rhyu IC, Kim HD, Jun HK, Min BM, Lee SH, Choi BK. In-vivo-induced antigenic determinants of Fusobacterium nucleatum subsp. nucleatum. Mol Oral Microbiol 2011;26:164-72. https://doi.org/10.1111/j.2041-1014.2010.00594.x
  14. Yu F, Anaya C, Lewis JP. Outer membrane proteome of Prevotella intermedia 17: identification of thioredoxin and iron-repressible hemin uptake loci. Proteomics 2007;7:403-12. https://doi.org/10.1002/pmic.200600441
  15. Aguilera O, Andres MT, Heath J, Fierro JF, Douglas CW. Evaluation of the antimicrobial effect of lactoferrin on Porphyromonas gingivalis, Prevotella intermedia and Prevotella nigrescens. FEMS Immunol Med Microbiol 1998;21:29-36. https://doi.org/10.1016/S0928-8244(98)00030-3
  16. Liu LY, McGreor N, Wong BK, Butt H, Darby IB. The association between clinical periodontal parameters and free haem concentration within the gingival crevicular fluid: a pilot study. J Periodontal Res 2016;51:86-94. https://doi.org/10.1111/jre.12286
  17. Loesche WJ. Chemotherapy of dental plaque infections. Oral Sci Rev 1976;9:65-107.
  18. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr. Microbial complexes in subgingival plaque. J Clin Periodontol 1998;25:134-44. https://doi.org/10.1111/j.1600-051X.1998.tb02419.x
  19. Olczak T, Simpson W, Liu X, Genco CA. Iron and heme utilization in Porphyromonas gingivalis. FEMS Microbiol Rev 2005;29:119-44. https://doi.org/10.1016/j.femsre.2004.09.001
  20. Lee SH, Baek DH. Effects of Streptococcus thermophilus on volatile sulfur compounds produced by Porphyromonas gingivalis. Arch Oral Biol 2014;59:1205-10. https://doi.org/10.1016/j.archoralbio.2014.07.006
  21. Lee SH, Baek DH. Characteristics of Porphyromonas gingivalis lipopolysaccharide in co-culture with Fusobacterium nucleatum. Mol Oral Microbiol 2013;28:230-8. https://doi.org/10.1111/omi.12020

Cited by

  1. The Interaction of Hemin, a Porphyrin Derivative, with the Purified Rat Brain 2-Oxoglutarate Carrier vol.11, pp.8, 2021, https://doi.org/10.3390/biom11081175