참고문헌
- L. Boccardo, A contribution to the theory of quasilinear elliptic equations and application to the minimization of integral functionals, Milan J. Math. 79 (2011), no. 1, 193-206. https://doi.org/10.1007/s00032-011-0150-y
- L. Boccardo, L. Moreno-Merida, and L. Orsina, A class of quasilinear Dirichlet problems with unbounded coefficients and singular quadratic lower order terms, Milan J. Math. 83 (2015), no. 1, 157-176. https://doi.org/10.1007/s00032-015-0232-3
- L. Boccardo and F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal. 19 (1992), no. 6, 581-597. https://doi.org/10.1016/0362-546X(92)90023-8
- L. Boccardo and L. Orsina, Semilinear elliptic equations with singular nonlinearities, Calc. Var. Partial Differential Equations 37 (2010), no. 3-4, 363-380. https://doi.org/10.1007/s00526-009-0266-x
- J. Carmona and P. J. Martinez-Aparicio, A singular semilinear elliptic equation with a variable exponent, Adv. Nonlinear Stud. 16 (2016), no. 3, 491-498. https://doi.org/10.1515/ans-2015-5039
- M. G. Crandall, P. H. Rabinowitz, and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2 (1977), no. 2, 193-222. https://doi.org/10.1080/03605307708820029
- L. M. De Cave, Nonlinear elliptic equations with singular nonlinearities, Asymptot. Anal. 84 (2013), no. 3-4, 181-195. https://doi.org/10.3233/ASY-131173
- L. M. De Cave, R. Durastanti, and F. Oliva, Existence and uniqueness results for possibly singular nonlinear elliptic equations with measure data, NoDEA Nonlinear Differential Equations Appl. 25 (2018), no. 3, Paper No. 18, 35 pp. https://doi.org/10.1007/s00030-018-0509-7
- L. M. De Cave and F. Oliva, Elliptic equations with general singular lower order term and measure data, Nonlinear Anal. 128 (2015), 391-411. https://doi.org/10.1016/j.na.2015.08.005
- L. M. De Cave and F. Oliva, On the regularizing effect of some absorption and singular lower order terms in classical Dirichlet problems with L1 data, J. Elliptic Parabol. Equ. 2 (2016), no. 1-2, 73-85. https://doi.org/10.1007/BF03377393
- D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, second edition, Grundlehren der Mathematischen Wissenschaften, 224, Springer-Verlag, Berlin, 1983. https://doi.org/10.1007/978-3-642-61798-0
- A. C. Lazer and P. J. McKenna, On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc. 111 (1991), no. 3, 721-730. https://doi.org/10.2307/2048410
- L. Moreno-Merida, A quasilinear Dirichlet problem with quadratic growth respect to the gradient and L1 data, Nonlinear Anal. 95 (2014), 450-459. https://doi.org/10.1016/j.na.2013.09.014
- F. Oliva and F. Petitta, On singular elliptic equations with measure sources, ESAIM Control Optim. Calc. Var. 22 (2016), no. 1, 289-308. https://doi.org/10.1051/cocv/2015004
- L. Orsina and F. Petitta, A Lazer-McKenna type problem with measures, Differential Integral Equations 29 (2016), no. 1-2, 19-36. http://projecteuclid.org/euclid.die/1448323251
- G. Stampacchia, Le probleme de Dirichlet pour les equations elliptiques du second ordre a coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), no. fasc., fasc. 1, 189-258. https://doi.org/10.5802/aif.204
- C. A. Stuart, Existence and approximation of solutions of non-linear elliptic equations, Math. Z. 147 (1976), no. 1, 53-63. https://doi.org/10.1007/BF01214274
- S. Yijing and Z. Duanzhi, The role of the power 3 for elliptic equations with negative exponents, Calc. Var. Partial Differential Equations 49 (2014), no. 3-4, 909-922. https://doi.org/10.1007/s00526-013-0604-x