DOI QR코드

DOI QR Code

ON NONLINEAR ELLIPTIC EQUATIONS WITH SINGULAR LOWER ORDER TERM

  • Marah, Amine (Faculte des Sciences Et Techniques Morocco Universite Hassan 1) ;
  • Redwane, Hicham (Faculte des Sciences Juridiques 'Economiques et Sociales Universite Hassan 1)
  • 투고 : 2020.04.04
  • 심사 : 2020.08.21
  • 발행 : 2021.03.31

초록

We prove existence and regularity results of solutions for a class of nonlinear singular elliptic problems like $$\{-div\((a(x)+{\mid}u{\mid}^q){\nabla}u\)=\frac{f}{{\mid}u{\mid}^{\gamma}}{\text{ in }}{\Omega},\\{u=0\;on\;{\partial}{\Omega},$$ where Ω is a bounded open subset of ℝℕ(N ≥ 2), a(x) is a measurable nonnegative function, q, �� > 0 and the source f is a nonnegative (not identicaly zero) function belonging to Lm(Ω) for some m ≥ 1. Our results will depend on the summability of f and on the values of q, �� > 0.

키워드

참고문헌

  1. L. Boccardo, A contribution to the theory of quasilinear elliptic equations and application to the minimization of integral functionals, Milan J. Math. 79 (2011), no. 1, 193-206. https://doi.org/10.1007/s00032-011-0150-y
  2. L. Boccardo, L. Moreno-Merida, and L. Orsina, A class of quasilinear Dirichlet problems with unbounded coefficients and singular quadratic lower order terms, Milan J. Math. 83 (2015), no. 1, 157-176. https://doi.org/10.1007/s00032-015-0232-3
  3. L. Boccardo and F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal. 19 (1992), no. 6, 581-597. https://doi.org/10.1016/0362-546X(92)90023-8
  4. L. Boccardo and L. Orsina, Semilinear elliptic equations with singular nonlinearities, Calc. Var. Partial Differential Equations 37 (2010), no. 3-4, 363-380. https://doi.org/10.1007/s00526-009-0266-x
  5. J. Carmona and P. J. Martinez-Aparicio, A singular semilinear elliptic equation with a variable exponent, Adv. Nonlinear Stud. 16 (2016), no. 3, 491-498. https://doi.org/10.1515/ans-2015-5039
  6. M. G. Crandall, P. H. Rabinowitz, and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2 (1977), no. 2, 193-222. https://doi.org/10.1080/03605307708820029
  7. L. M. De Cave, Nonlinear elliptic equations with singular nonlinearities, Asymptot. Anal. 84 (2013), no. 3-4, 181-195. https://doi.org/10.3233/ASY-131173
  8. L. M. De Cave, R. Durastanti, and F. Oliva, Existence and uniqueness results for possibly singular nonlinear elliptic equations with measure data, NoDEA Nonlinear Differential Equations Appl. 25 (2018), no. 3, Paper No. 18, 35 pp. https://doi.org/10.1007/s00030-018-0509-7
  9. L. M. De Cave and F. Oliva, Elliptic equations with general singular lower order term and measure data, Nonlinear Anal. 128 (2015), 391-411. https://doi.org/10.1016/j.na.2015.08.005
  10. L. M. De Cave and F. Oliva, On the regularizing effect of some absorption and singular lower order terms in classical Dirichlet problems with L1 data, J. Elliptic Parabol. Equ. 2 (2016), no. 1-2, 73-85. https://doi.org/10.1007/BF03377393
  11. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, second edition, Grundlehren der Mathematischen Wissenschaften, 224, Springer-Verlag, Berlin, 1983. https://doi.org/10.1007/978-3-642-61798-0
  12. A. C. Lazer and P. J. McKenna, On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc. 111 (1991), no. 3, 721-730. https://doi.org/10.2307/2048410
  13. L. Moreno-Merida, A quasilinear Dirichlet problem with quadratic growth respect to the gradient and L1 data, Nonlinear Anal. 95 (2014), 450-459. https://doi.org/10.1016/j.na.2013.09.014
  14. F. Oliva and F. Petitta, On singular elliptic equations with measure sources, ESAIM Control Optim. Calc. Var. 22 (2016), no. 1, 289-308. https://doi.org/10.1051/cocv/2015004
  15. L. Orsina and F. Petitta, A Lazer-McKenna type problem with measures, Differential Integral Equations 29 (2016), no. 1-2, 19-36. http://projecteuclid.org/euclid.die/1448323251
  16. G. Stampacchia, Le probleme de Dirichlet pour les equations elliptiques du second ordre a coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), no. fasc., fasc. 1, 189-258. https://doi.org/10.5802/aif.204
  17. C. A. Stuart, Existence and approximation of solutions of non-linear elliptic equations, Math. Z. 147 (1976), no. 1, 53-63. https://doi.org/10.1007/BF01214274
  18. S. Yijing and Z. Duanzhi, The role of the power 3 for elliptic equations with negative exponents, Calc. Var. Partial Differential Equations 49 (2014), no. 3-4, 909-922. https://doi.org/10.1007/s00526-013-0604-x