DOI QR코드

DOI QR Code

Transcriptomic Analysis of Cellular Senescence: One Step Closer to Senescence Atlas

  • Kim, Sohee (Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Chuna (Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • 투고 : 2020.12.01
  • 심사 : 2021.03.12
  • 발행 : 2021.03.31

초록

Senescent cells that gradually accumulate during aging are one of the leading causes of aging. While senolytics can improve aging in humans as well as mice by specifically eliminating senescent cells, the effect of the senolytics varies in different cell types, suggesting variations in senescence. Various factors can induce cellular senescence, and the rate of accumulation of senescent cells differ depending on the organ. In addition, since the heterogeneity is due to the spatiotemporal context of senescent cells, in vivo studies are needed to increase the understanding of senescent cells. Since current methods are often unable to distinguish senescent cells from other cells, efforts are being made to find markers commonly expressed in senescent cells using bulk RNA-sequencing. Moreover, single-cell RNA (scRNA) sequencing, which analyzes the transcripts of each cell, has been utilized to understand the in vivo characteristics of the rare senescent cells. Recently, transcriptomic cell atlases for each organ using this technology have been published in various species. Novel senescent cells that do not express previously established marker genes have been discovered in some organs. However, there is still insufficient information on senescent cells due to the limited throughput of the scRNA sequencing technology. Therefore, it is necessary to improve the throughput of the scRNA sequencing technology or develop a way to enrich the rare senescent cells. The in vivo senescent cell atlas that is established using rapidly developing single-cell technologies will contribute to the precise rejuvenation by specifically removing senescent cells in each tissue and individual.

키워드

참고문헌

  1. Acosta, J.C., O'Loghlen, A., Banito, A., Guijarro, M.V., Augert, A., Raguz, S., Fumagalli, M., Da Costa, M., Brown, C., Popov, N., et al. (2008). Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133, 1006-1018. https://doi.org/10.1016/j.cell.2008.03.038
  2. Almanzar, N., Antony, J., Baghel, A.S., Bakerman, I., Bansal, I., Barres, B.A., Beachy, P.A., Berdnik, D., Bilen, B., Brownfield, D., et al. (2020). A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature 583, 590-595. https://doi.org/10.1038/s41586-020-2496-1
  3. Amor, C., Feucht, J., Leibold, J., Ho, Y.J., Zhu, C., Alonso-Curbelo, D., Mansilla-Soto, J., Boyer, J.A., Li, X., Giavridis, T., et al. (2020). Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127-132. https://doi.org/10.1038/s41586-020-2403-9
  4. Ashapkin, V.V., Kutueva, L.I., and Vanyushin, B.F. (2017). Aging as an epigenetic phenomenon. Curr. Genomics 18, 385-407.
  5. Baar, M.P., Brandt, R.M., Putavet, D.A., Klein, J.D., Derks, K.W., Bourgeois, B.R., Stryeck, S., Rijksen, Y., van Willigenburg, H., Feijtel, D.A., et al. (2017). Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169, 132-147.e16. https://doi.org/10.1016/j.cell.2017.02.031
  6. Basisty, N., Kale, A., Jeon, O.H., Kuehnemann, C., Payne, T., Rao, C., Holtz, A., Shah, S., Sharma, V., Ferrucci, L., et al. (2020). A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 18, e3000599. https://doi.org/10.1371/journal.pbio.3000599
  7. Benassi, M.S., Molendini, L., Gamberi, G., Ragazzini, P., Sollazzo, M.R., Merli, M., Asp, J., Magagnoli, G., Balladelli, A., Bertoni, F., et al. (1999). Alteration of pRb/p16/cdk4 regulation in human osteosarcoma. Int. J. Cancer 84, 489-493.
  8. Biran, A., Zada, L., Abou Karam, P., Vadai, E., Roitman, L., Ovadya, Y., Porat, Z., and Krizhanovsky, V. (2017). Quantitative identification of senescent cells in aging and disease. Aging Cell 16, 661-671. https://doi.org/10.1111/acel.12592
  9. Borodkina, A., Deryabin, P., Giukova, A.A., and Nikolsky, N. (2018). "Social Life" of senescent cells: what is SASP and why study it? Acta Naturae 10, 4-14. https://doi.org/10.32607/2075-8251-2018-10-2-48-5710.32607/20758251-2018-10-4-4-18
  10. Burd, C.E., Sorrentino, J.A., Clark, K.S., Darr, D.B., Krishnamurthy, J., Deal, A.M., Bardeesy, N., Castrillon, D.H., Beach, D.H., and Sharpless, N.E. (2013). Monitoring tumorigenesis and senescence in vivo with a p16INK4a-luciferase model. Cell 152, 340-351. https://doi.org/10.1016/j.cell.2012.12.010
  11. Campisi, J. (2001). Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol. 11, S27-S31. https://doi.org/10.1016/S0962-8924(01)82148-6
  12. Casella, G., Munk, R., Kim, K.M., Piao, Y., De, S., Abdelmohsen, K., and Gorospe, M. (2019). Transcriptome signature of cellular senescence. Nucleic Acids Res. 47, 7294-7305. https://doi.org/10.1093/nar/gkz555
  13. Catz, S.D. and Johnson, J.L. (2001). Transcriptional regulation of bcl-2 by nuclear factor κB and its significance in prostate cancer. Oncogene 20, 7342-7351. https://doi.org/10.1038/sj/onc/1204926
  14. Chen, X., Xu, H., Hou, J., Wang, H., Zheng, Y., Li, H., Cai, H., Han, X., and Dai, J. (2020). Epithelial cell senescence induces pulmonary fibrosis through Nanog-mediated fibroblast activation. Aging (Albany NY) 12, 242. https://doi.org/10.18632/aging.102613
  15. Chen, Z., Trotman, L.C., Shaffer, D., Lin, H.K., Dotan, Z.A., Niki, M., Koutcher, J.A., Scher, H.I., Ludwig, T., Gerald, W., et al. (2005). Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725-730. https://doi.org/10.1038/nature03918
  16. Chiche, A., Le Roux, I., von Joest, M., Sakai, H., Aguin, S.B., Cazin, C., Salam, R., Fiette, L., Alegria, O., Flamant, P., et al. (2017). Injury-induced senescence enables in vivo reprogramming in skeletal muscle. Cell Stem Cell 20, 407-414.e4. https://doi.org/10.1016/j.stem.2016.11.020
  17. Childs, B.G., Baker, D.J., Kirkland, J.L., Campisi, J., and Van Deursen, J.M. (2014). Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep. 15, 1139-1153. https://doi.org/10.15252/embr.201439245
  18. Childs, B.G., Baker, D.J., Wijshake, T., Conover, C.A., Campisi, J., and Van Deursen, J.M. (2016). Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354, 472-477. https://doi.org/10.1126/science.aaf6659
  19. Coppe, J.P., Kauser, K., Campisi, J., and Beausejour, C.M. (2006). Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. J. Biol. Chem. 281, 29568-29574. https://doi.org/10.1074/jbc.M603307200
  20. Coppe, J.P., Patil, C.K., Rodier, F., Sun, Y., Munoz, D.P., Goldstein, J., Nelson, P.S., Desprez, P.Y., and Campisi, J. (2008). Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853-2868.
  21. Demaria, M., Ohtani, N., Youssef, S.A., Rodier, F., Toussaint, W., Mitchell, J.R., Laberge, R.M., Vijg, J., Van Steeg, H., Dolle, M.E., et al. (2014). An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722-733. https://doi.org/10.1016/j.devcel.2014.11.012
  22. De Micheli, A.J., Spector, J.A., Elemento, O., and Cosgrove, B.D. (2020). A reference single-cell transcriptomic atlas of human skeletal muscle tissue reveals bifurcated muscle stem cell populations. Skelet. Muscle 10, 19. https://doi.org/10.1186/s13395-020-00236-3
  23. Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I., and Pereira-Smith, O. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. U. S. A. 92, 9363-9367. https://doi.org/10.1073/pnas.92.20.9363
  24. Dorr, J.R., Yu, Y., Milanovic, M., Beuster, G., Zasada, C., Dabritz, J.H.M., Lisec, J., Lenze, D., Gerhardt, A., Schleicher, K., et al. (2013). Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature 501, 421-425. https://doi.org/10.1038/nature12437
  25. Druelle, C., Drullion, C., Desle, J., Martin, N., Saas, L., Cormenier, J., Malaquin, N., Huot, L., Slomianny, C., Bouali, F., et al. (2016). ATF6α regulates morphological changes associated with senescence in human fibroblasts. Oncotarget 7, 67699-67715. https://doi.org/10.18632/oncotarget.11505
  26. Enge, M., Arda, H.E., Mignardi, M., Beausang, J., Bottino, R., Kim, S.K., and Quake, S.R. (2017). Single-cell analysis of human pancreas reveals transcriptional signatures of aging and somatic mutation patterns. Cell 171, 321-330.e14. https://doi.org/10.1016/j.cell.2017.09.004
  27. Gabellini, C., Castellini, L., Trisciuoglio, D., Kracht, M., Zupi, G., and Del Bufalo, D. (2008). Involvement of nuclear factor-kappa B in bcl-xL-induced interleukin 8 expression in glioblastoma. J. Neurochem. 107, 871-882. https://doi.org/10.1111/j.1471-4159.2008.05661.x
  28. Hall, B.M., Balan, V., Gleiberman, A.S., Strom, E., Krasnov, P., Virtuoso, L.P., Rydkina, E., Vujcic, S., Balan, K., Gitlin, I.I., et al. (2017). p16 (Ink4a) and senescence-associated β-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging (Albany NY) 9, 1867-1884. https://doi.org/10.18632/aging.101268
  29. Hammond, T.R., Dufort, C., Dissing-Olesen, L., Giera, S., Young, A., Wysoker, A., Walker, A.J., Gergits, F., Segel, M., Nemesh, J., et al. (2019). Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 253-271. e6. https://doi.org/10.1016/j.immuni.2018.11.004
  30. Hara, E., Smith, R., Parry, D., Tahara, H., Stone, S., and Peters, G. (1996). Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. Mol. Cell. Biol. 16, 859-867. https://doi.org/10.1128/MCB.16.3.859
  31. Hernandez-Segura, A., de Jong, T.V., Melov, S., Guryev, V., Campisi, J., and Demaria, M. (2017). Unmasking transcriptional heterogeneity in senescent cells. Curr. Biol. 27, 2652-2660.e4. https://doi.org/10.1016/j.cub.2017.07.033
  32. Idda, M.L., McClusky, W.G., Lodde, V., Munk, R., Abdelmohsen, K., Rossi, M., and Gorospe, M. (2020). Survey of senescent cell markers with age in human tissues. Aging (Albany NY) 12, 4052-4066. https://doi.org/10.18632/aging.102903
  33. Jeyapalan, J.C., Ferreira, M., Sedivy, J.M., and Herbig, U. (2007). Accumulation of senescent cells in mitotic tissue of aging primates. Mech. Ageing Dev. 128, 36-44. https://doi.org/10.1016/j.mad.2006.11.008
  34. Kang, T.W., Yevsa, T., Woller, N., Hoenicke, L., Wuestefeld, T., Dauch, D., Hohmeyer, A., Gereke, M., Rudalska, R., Potapova, A., et al. (2011). Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547-551. https://doi.org/10.1038/nature10599
  35. Kimmel, J.C., Penland, L., Rubinstein, N.D., Hendrickson, D.G., Kelley, D.R., and Rosenthal, A.Z. (2019). Murine single-cell RNA-seq reveals cell-identity-and tissue-specific trajectories of aging. Genome Res. 29, 2088-2103. https://doi.org/10.1101/gr.253880.119
  36. Krishnamurthy, J., Torrice, C., Ramsey, M.R., Kovalev, G.I., Al-Regaiey, K., Su, L., and Sharpless, N.E. (2004). Ink4a/Arf expression is a biomarker of aging. J. Clin. Invest. 114, 1299-1307. https://doi.org/10.1172/JCI22475
  37. Krizhanovsky, V., Yon, M., Dickins, R.A., Hearn, S., Simon, J., Miething, C., Yee, H., Zender, L., and Lowe, S.W. (2008). Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657-667. https://doi.org/10.1016/j.cell.2008.06.049
  38. Krtolica, A., Parrinello, S., Lockett, S., Desprez, P.Y., and Campisi, J. (2001). Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl. Acad. Sci. U. S. A. 98, 12072-12077. https://doi.org/10.1073/pnas.211053698
  39. Lafzi, A., Moutinho, C., Picelli, S., and Heyn, H. (2018). Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies. Nat. Protoc. 13, 2742-2757. https://doi.org/10.1038/s41596-018-0073-y
  40. Liu, Z., Wild, C., Ding, Y., Ye, N., Chen, H., Wold, E.A., and Zhou, J. (2016). BH4 domain of Bcl-2 as a novel target for cancer therapy. Drug Discov. Today 21, 989-996. https://doi.org/10.1016/j.drudis.2015.11.008
  41. Lozano-Torres, B., Estepa-Fernandez, A., Rovira, M., Orzaez, M., Serrano, M., Martinez-Manez, R., and Sancenon, F. (2019). The chemistry of senescence. Nat. Rev. Chem. 3, 426-441. https://doi.org/10.1038/s41570-019-0108-0
  42. Marthandan, S., Priebe, S., Hemmerich, P., Klement, K., and Diekmann, S. (2014). Long-term quiescent fibroblast cells transit into senescence. PLoS One 9, e115597. https://doi.org/10.1371/journal.pone.0115597
  43. Mosteiro, L., Pantoja, C., Alcazar, N., Marion, R.M., Chondronasiou, D., Rovira, M., Fernandez-Marcos, P.J., Munoz-Martin, M., Blanco-Aparicio, C., Pastor, J., et al. (2016). Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science 354, aaf4445. https://doi.org/10.1126/science.aaf4445
  44. Munoz-Espin, D. and Serrano, M. (2014). Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 15, 482-496. https://doi.org/10.1038/nrm3823
  45. Nathan, C. and Ding, A. (2010). Nonresolving inflammation. Cell 140, 871-882. https://doi.org/10.1016/j.cell.2010.02.029
  46. Paez-Ribes, M., Gonzalez-Gualda, E., Doherty, G.J., and Munoz-Espin, D. (2019). Targeting senescent cells in translational medicine. EMBO Mol. Med. 11, e10234.
  47. Pajvani, U.B., Trujillo, M.E., Combs, T.P., Iyengar, P., Jelicks, L., Roth, K.A., Kitsis, R.N., and Scherer, P.E. (2005). Fat apoptosis through targeted activation of caspase 8: a new mouse model of inducible and reversible lipoatrophy. Nat. Med. 11, 797-803. https://doi.org/10.1038/nm1262
  48. Palmer, A.K. and Kirkland, J.L. (2016). Aging and adipose tissue: potential interventions for diabetes and regenerative medicine. Exp. Gerontol. 86, 97-105. https://doi.org/10.1016/j.exger.2016.02.013
  49. Perez-Mancera, P.A., Young, A.R., and Narita, M. (2014). Inside and out: the activities of senescence in cancer. Nat. Rev. Cancer 14, 547-558. https://doi.org/10.1038/nrc3773
  50. Ray, D. and Yung, R. (2018). Immune senescence, epigenetics and autoimmunity. Clin. Immunol. 196, 59-63. https://doi.org/10.1016/j.clim.2018.04.002
  51. Ressler, S., Bartkova, J., Niederegger, H., Bartek, J., Scharffetter-Kochanek, K., Jansen-Durr, P., and Wlaschek, M. (2006). p16INK4a is a robust in vivo biomarker of cellular aging in human skin. Aging Cell 5, 379-389. https://doi.org/10.1111/j.1474-9726.2006.00231.x
  52. Reyfman, P.A., Walter, J.M., Joshi, N., Anekalla, K.R., McQuattie-Pimentel, A.C., Chiu, S., Fernandez, R., Akbarpour, M., Chen, C.I., Ren, Z., et al. (2019). Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 199, 1517-1536. https://doi.org/10.1164/rccm.201712-2410OC
  53. Roy, A.L., Sierra, F., Howcroft, K., Singer, D.S., Sharpless, N., Hodes, R.J., Wilder, E.L., and Anderson, J.M. (2020). A blueprint for characterizing senescence. Cell 183, 1143-1146. https://doi.org/10.1016/j.cell.2020.10.032
  54. Schaum, N., Lehallier, B., Hahn, O., Palovics, R., Hosseinzadeh, S., Lee, S.E., Sit, R., Lee, D.P., Losada, P.M., and Zardeneta, M.E. (2020). Ageing hallmarks exhibit organ-specific temporal signatures. Nature 583, 596-602. https://doi.org/10.1038/s41586-020-2499-y
  55. Serrano, M., Hannon, G.J., and Beach, D. (1993). A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366, 704-707. https://doi.org/10.1038/366704a0
  56. Sharpless, N.E. and Sherr, C.J. (2015). Forging a signature of in vivo senescence. Nat. Rev. Cancer 15, 397-408. https://doi.org/10.1038/nrc3960
  57. Smogorzewska, A. and de Lange, T. (2002). Different telomere damage signaling pathways in human and mouse cells. EMBO J. 21, 4338-4348. https://doi.org/10.1093/emboj/cdf433
  58. Soares, J.P., Cortinhas, A., Bento, T., Leitao, J.C., Collins, A.R., Gaivao, I., and Mota, M.P. (2014). Aging and DNA damage in humans: a meta-analysis study. Aging (Albany NY) 6, 432-439. https://doi.org/10.18632/aging.100667
  59. Storer, M., Mas, A., Robert-Moreno, A., Pecoraro, M., Ortells, M.C., Di Giacomo, V., Yosef, R., Pilpel, N., Krizhanovsky, V., Sharpe, J., et al. (2013). Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119-1130. https://doi.org/10.1016/j.cell.2013.10.041
  60. Wiley, C.D., Liu, S., Limbad, C., Zawadzka, A.M., Beck, J., Demaria, M., Artwood, R., Alimirah, F., Lopez-Dominguez, J.A., Kuehnemann, C., et al. (2019). SILAC analysis reveals increased secretion of hemostasis-related factors by senescent cells. Cell Rep. 28, 3329-3337.e5. https://doi.org/10.1016/j.celrep.2019.08.049
  61. Xu, M., Palmer, A.K., Ding, H., Weivoda, M.M., Pirtskhalava, T., White, T.A., Sepe, A., Johnson, K.O., Stout, M.B., Giorgadze, N., et al. (2015). Targeting senescent cells enhances adipogenesis and metabolic function in old age. Elife 4, e12997. https://doi.org/10.7554/elife.12997
  62. Xue, W., Zender, L., Miething, C., Dickins, R.A., Hernando, E., Krizhanovsky, V., Cordon-Cardo, C., and Lowe, S.W. (2007). Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656-660. https://doi.org/10.1038/nature05529
  63. Yang, N.C. and Hu, M.L. (2005). The limitations and validities of senescence associated-β-galactosidase activity as an aging marker for human foreskin fibroblast Hs68 cells. Exp. Gerontol. 40, 813-819. https://doi.org/10.1016/j.exger.2005.07.011
  64. Yi, W., Lu, Y., Zhong, S., Zhang, M., Sun, L., Dong, H., Wang, M., Wei, M., Xie, H., Qu, H., et al. (2020). A single-cell transcriptome atlas of the aging human and macaque retina. Natl. Sci. Rev. 2020 Aug 25 [Epub]. https://doi.org/10.1101/2020.07.17.207977
  65. Zhang, R., Chen, H.Z., and Liu, D.P. (2015). The four layers of aging. Cell Syst. 1, 180-186. https://doi.org/10.1016/j.cels.2015.09.002
  66. Zheng, Y., Liu, X., Le, W., Xie, L., Li, H., Wen, W., Wang, S., Ma, S., Huang, Z., Ye, J., et al. (2020). A human circulating immune cell landscape in aging and COVID-19. Protein Cell 11, 740-770. https://doi.org/10.1007/s13238-020-00762-2
  67. Zhou, Q., Wan, Q., Jiang, Y., Liu, J., Qiang, L., and Sun, L. (2020). A landscape of murine long non-coding RNAs reveals the leading transcriptome alterations in adipose tissue during aging. Cell Rep. 31, 107694. https://doi.org/10.1016/j.celrep.2020.107694
  68. Zhu, Y., Armstrong, J.L., Tchkonia, T., and Kirkland, J.L. (2014). Cellular senescence and the senescent secretory phenotype in age-related chronic diseases. Curr. Opin. Clin. Nutr. Metab. Care 17, 324-328. https://doi.org/10.1097/MCO.0000000000000065
  69. Zhu, Y., Tchkonia, T., Fuhrmann-Stroissnigg, H., Dai, H.M., Ling, Y.Y., Stout, M.B., Pirtskhalava, T., Giorgadze, N., Johnson, K.O., Giles, C.B., et al. (2016). Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15, 428-435. https://doi.org/10.1111/acel.12445
  70. Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A.C., Ding, H., Giorgadze, N., Palmer, A.K., Ikeno, Y., Hubbard, G.B., Lenburg, M., et al. (2015). The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644-658. https://doi.org/10.1111/acel.12344
  71. Zou, Z., Long, X., Zhao, Q., Zheng, Y., Song, M., Ma, S., Jing, Y., Wang, S., He, Y., Esteban, C.R., et al. (2021). A single-cell transcriptomic atlas of human skin aging. Dev. Cell 56, 383-397.e8. https://doi.org/10.1016/j.devcel.2020.11.002

피인용 문헌

  1. Angptl2 is a Marker of Cellular Senescence: The Physiological and Pathophysiological Impact of Angptl2-Related Senescence vol.22, pp.22, 2021, https://doi.org/10.3390/ijms222212232