DOI QR코드

DOI QR Code

Investigation of morphological changes of HPS membrane caused by cecropin B through scanning electron microscopy and atomic force microscopy

  • Hu, Han (National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology) ;
  • Jiang, Changsheng (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Zhang, Binzhou (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Guo, Nan (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Li, Zhonghua (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Guo, Xiaozhen (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Wang, Yang (National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology) ;
  • Liu, Binlei (National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology) ;
  • He, Qigai (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University)
  • 투고 : 2021.01.22
  • 심사 : 2021.06.04
  • 발행 : 2021.09.30

초록

Background: Antimicrobial peptides (AMPs) have been identified as promising compounds for consideration as novel antimicrobial agents. Objectives: This study analyzed the efficacy of cecropin B against Haemophilus parasuis isolates through scanning electron microscopy (SEM) and atomic force microscopy (AFM) experiments. Results: Cecropin B exhibited broad inhibition activity against 15 standard Haemophilus parasuis (HPS) strains and 5 of the clinical isolates had minimum inhibition concentrations (MICs) ranging from 2 to 16 ㎍/mL. Microelectrophoresis and hexadecane adsorption assays indicated that the more hydrophobic and the higher the isoelectric point (IEP) of the strain, the more sensitive it was to cecropin B. Through SEM, multiple blisters of various shapes and dents on the cell surface were observed. Protrusions and leakage were detected by AFM. Conclusions: Based on the results, cecropin B could inhibit HPS via a pore-forming mechanism by interacting with the cytoplasmic membrane of bacteria. Moreover, as cecropin B concentration increased, the bacteria membrane was more seriously damaged. Thus, cecropin B could be developed as an effective anti-HPS agent for use in clinical applications.

키워드

과제정보

We acknowledge Dr. Shiyi Ye for critical reading and language editing. We thank Dr. Blackall (Yeerongpilly, Australia) for his generous gift of the H. parasuis reference strains.

참고문헌

  1. Zhang P, Zhang C, Aragon V, Zhou X, Zou M, Wu C, et al. Investigation of Haemophilus parasuis from healthy pigs in China. Vet Microbiol. 2019;231:40-44. https://doi.org/10.1016/j.vetmic.2019.02.034
  2. Kielstein P, Rapp-Gabrielson VJ. Designation of 15 serovars of Haemophilus parasuis on the basis of immunodiffusion using heat-stable antigen extracts. J Clin Microbiol. 1992;30(4):862-865. https://doi.org/10.1128/jcm.30.4.862-865.1992
  3. Liu H, Xue Q, Zeng Q, Zhao Z. Haemophilus parasuis vaccines. Vet Immunol Immunopathol. 2016;180:53-58. https://doi.org/10.1016/j.vetimm.2016.09.002
  4. Lazzaro BP, Zasloff M, Rolff J. Antimicrobial peptides: application informed by evolution. Science. 2020;368(6490):eaau5480. https://doi.org/10.1126/science.aau5480
  5. Wu Q, Patocka J, Kuca K. Insect antimicrobial peptides, a mini review. Toxins (Basel). 2018;10(11):461. https://doi.org/10.3390/toxins10110461
  6. Santa-Gonzalez GA, Patino-Gonzalez E, Manrique-Moreno M. Synthetic peptide ΔM4-induced cell death associated with cytoplasmic membrane disruption, mitochondrial dysfunction and cell cycle arrest in human melanoma cells. Molecules. 2020;25(23):5684. https://doi.org/10.3390/molecules25235684
  7. Shwaiki LN, Sahin AW, Arendt EK. Study on the inhibitory activity of a synthetic defensin derived from barley endosperm against common food spoilage yeast. Molecules. 2020;26(1):165. https://doi.org/10.3390/molecules26010165
  8. Ziaja M, Dziedzic A, Szafraniec K, Piastowska-Ciesielska A. Cecropins in cancer therapies-where we have been? Eur J Pharmacol. 2020;882:173317. https://doi.org/10.1016/j.ejphar.2020.173317
  9. Hale JD, Hancock RE. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther. 2007;5(6):951-959. https://doi.org/10.1586/14787210.5.6.951
  10. Hancock RE, Diamond G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 2000;8(9):402-410. https://doi.org/10.1016/S0966-842X(00)01823-0
  11. Liang X, Zhang X, Lian K, Tian X, Zhang M, Wang S, et al. Antiviral effects of Bovine antimicrobial peptide against TGEV in vivo and in vitro. J Vet Sci. 2020;21(5):e80. https://doi.org/10.4142/jvs.2020.21.e80
  12. Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature. 1981;292(5820):246-248. https://doi.org/10.1038/292246a0
  13. Mchaourab HS, Hyde JS, Feix JB. Aggregation state of spin-labeled cecropin AD in solution. Biochemistry. 1993;32(44):11895-11902. https://doi.org/10.1021/bi00095a019
  14. Hu H, Wang C, Guo X, Li W, Wang Y, He Q. Broad activity against porcine bacterial pathogens displayed by two insect antimicrobial peptides moricin and cecropin B. Mol Cells. 2013;35(2):106-114. https://doi.org/10.1007/s10059-013-2132-0
  15. Sharma A, Sharma R, Imamura M, Yamakawa M, Machii H. Transgenic expression of cecropin B, an antibacterial peptide from Bombyx mori, confers enhanced resistance to bacterial leaf blight in rice. FEBS Lett. 2000;484(1):7-11. https://doi.org/10.1016/S0014-5793(00)02106-2
  16. Liu D, Liu J, Li J, Xia L, Yang J, Sun S, et al. A potential food biopreservative, CecXJ-37N, non-covalently intercalates into the nucleotides of bacterial genomic DNA beyond membrane attack. Food Chem. 2017;217:576-584. https://doi.org/10.1016/j.foodchem.2016.09.033
  17. Saviane A, Romoli O, Bozzato A, Freddi G, Cappelletti C, Rosini E, et al. Intrinsic antimicrobial properties of silk spun by genetically modified silkworm strains. Transgenic Res. 2018;27(1):87-101. https://doi.org/10.1007/s11248-018-0059-0
  18. Gregory SM, Cavenaugh A, Journigan V, Pokorny A, Almeida PF. A quantitative model for the all-ornone permeabilization of phospholipid vesicles by the antimicrobial peptide cecropin A. Biophys J. 2008;94(5):1667-1680. https://doi.org/10.1529/biophysj.107.118760
  19. Rangarajan N, Bakshi S, Weisshaar JC. Localized permeabilization of E. coli membranes by the antimicrobial peptide Cecropin A. Biochemistry. 2013;52(38):6584-6594. https://doi.org/10.1021/bi400785j
  20. Gazit E, Miller IR, Biggin PC, Sansom MS, Shai Y. Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes. J Mol Biol. 1996;258(5):860-870. https://doi.org/10.1006/jmbi.1996.0293
  21. Lyu Y, Fitriyanti M, Narsimhan G. Nucleation and growth of pores in 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) / cholesterol bilayer by antimicrobial peptides melittin, its mutants and cecropin P1. Colloids Surf B Biointerfaces. 2019;173:121-127. https://doi.org/10.1016/j.colsurfb.2018.09.049
  22. Pelletier C, Bouley C, Cayuela C, Bouttier S, Bourlioux P, Bellon-Fontaine MN. Cell surface characteristics of Lactobacillus casei subsp. casei, Lactobacillus paracasei subsp. paracasei, and Lactobacillus rhamnosus strains. Appl Environ Microbiol. 1997;63(5):1725-1731. https://doi.org/10.1128/aem.63.5.1725-1731.1997
  23. Giacometti A, Cirioni O, Del Prete MS, Paggi AM, D'Errico MM, Scalise G. Combination studies between polycationic peptides and clinically used antibiotics against Gram-positive and Gram-negative bacteria. Peptides. 2000;21(8):1155-1160. https://doi.org/10.1016/S0196-9781(00)00254-0
  24. Dennison SR, Mura M, Harris F, Morton LH, Zvelindovsky A, Phoenix DA. The role of C-terminal amidation in the membrane interactions of the anionic antimicrobial peptide, maximin H5. Biochim Biophys Acta. 2015;1848(5):1111-1118. https://doi.org/10.1016/j.bbamem.2015.01.014
  25. Chen HM, Wang W, Smith D, Chan SC. Effects of the anti-bacterial peptide cecropin B and its analogs, cecropins B-1 and B-2, on liposomes, bacteria, and cancer cells. Biochim Biophys Acta. 1997;1336(2):171-179. https://doi.org/10.1016/S0304-4165(97)00024-X
  26. Wu JM, Jan PS, Yu HC, Haung HY, Fang HJ, Chang YI, et al. Structure and function of a custom anticancer peptide, CB1a. Peptides. 2009;30(5):839-848. https://doi.org/10.1016/j.peptides.2009.02.004
  27. Hancock RE. Peptide antibiotics. Lancet. 1997;349(9049):418-422. https://doi.org/10.1016/S0140-6736(97)80051-7
  28. Romoli O, Mukherjee S, Mohid SA, Dutta A, Montali A, Franzolin E, et al. Enhanced silkworm cecropin B antimicrobial activity against Pseudomonas aeruginosa from single amino acid variation. ACS Infect Dis. 2019;5(7):1200-1213. https://doi.org/10.1021/acsinfecdis.9b00042
  29. Ghiselli R, Giacometti A, Cirioni O, Mocchegiani F, Orlando F, D'Amato G, et al. Cecropin B enhances betalactams activities in experimental rat models of gram-negative septic shock. Ann Surg. 2004;239(2):251-256. https://doi.org/10.1097/01.sla.0000108673.25385.03
  30. Xia L, Liu Z, Ma J, Sun S, Yang J, Zhang F. Expression, purification and characterization of cecropin antibacterial peptide from Bombyx mori in Saccharomyces cerevisiae. Protein Expr Purif. 2013;90(1):47-54. https://doi.org/10.1016/j.pep.2013.02.013
  31. Chen HM, Chan SC, Lee JC, Chang CC, Murugan M, Jack RW. Transmission electron microscopic observations of membrane effects of antibiotic cecropin B on Escherichia coli. Microsc Res Tech. 2003;62(5):423-430. https://doi.org/10.1002/jemt.10406