DOI QR코드

DOI QR Code

Intraoperative fluid therapy for video-assisted ovariohysterectomy in dogs

  • Received : 2020.12.09
  • Accepted : 2021.04.20
  • Published : 2021.05.31

Abstract

Background: Intraoperative fluids are still poorly studied in veterinary medicine. In humans the dosage is associated with significant differences in postoperative outcomes. Objectives: The aim of this study is to verify the influence of three different fluid therapy rates in dogs undergoing video-assisted ovariohysterectomy. Methods: Twenty-four female dogs were distributed into three groups: G5, G10, and G20. Each group was given 5, 10, and 20 mL·kg-1·h-1 of Lactate Ringer, respectively. This study evaluated the following parameters: central venous pressure, arterial blood pressure, heart rate, respiratory rate, temperature, acid-base balance, and serum lactate levels. Additionally, this study evaluated the following urinary variables: urea, creatinine, protein to creatinine ratio, urine output, and urine specific gravity. The dogs were evaluated up to 26 h after the procedure. Results: All animals presented respiratory acidosis during the intraoperative period. The G5 group evidenced intraoperative oliguria (0.80 ± 0.38 mL·kg-1·h-1), differing from the G20 group (2.17 ± 0.52 mL·kg-1·h-1) (p = 0.001). Serum lactate was different between groups during extubation (p = 0.036), with higher values being recorded in the G5 group (2.19 ± 1.65 mmol/L). Animals from the G20 group presented more severe hypothermia at the end of the procedure (35.93 ± 0.61℃) (p = 0.032). Only the members of the G20 group presented mean potassium values below the reference for the species. Anion gap values were lower in the G20 group when compared to the G5 and G10 groups (p = 0.017). Conclusions: The use of lactated Ringer's solution at the rate of 10 mL·kg-1·h-1 seems to be beneficial in the elective laparoscopic procedures over the 5 or 20 mL·kg-1·h-1 rates of infusion.

Keywords

References

  1. Pascoe PJ. Chapter 17. Perioperative management of fluid therapy. In: DiBartola SP, editor. Fluid, Electrolyte, and Acid-Base Disorders in Small Animal Practice. 4th ed. St. Louis: Saunders/Elsevier; 2012, 405-435.
  2. Fantoni D, Shih AC. Perioperative fluid therapy. Vet Clin North Am Small Anim Pract. 2017;47(2):423-434. https://doi.org/10.1016/j.cvsm.2016.11.004
  3. Park YT, Okano S. Influence of pneumoperitoneum and postural change on the cardiovascular and respiratory systems in dogs. J Vet Med Sci. 2015;77(10):1223-1226. https://doi.org/10.1292/jvms.14-0687
  4. Schafer M, Krahenbuhl L. Effect of laparoscopy on intra-abdominal blood flow. Surgery. 2001;129(4):385-389. https://doi.org/10.1016/S0039-6060(01)44068-2
  5. Wever KE, Bruintjes MH, Warle MC, Hooijmans CR. Renal perfusion and function during pneumoperitoneum: a systematic review and meta-analysis of animal studies. PLoS One. 2016;11(9):e0163419. https://doi.org/10.1371/journal.pone.0163419
  6. Davis H, Jensen T, Johnson A, Knowles P, Meyer R, Rucinsky R, et al. 2013 AAHA/AAFP fluid therapy guidelines for dogs and cats. J Am Anim Hosp Assoc. 2013;49(3):149-159. https://doi.org/10.5326/JAAHA-MS-5868
  7. Chappell D, Jacob M, Hofmann-Kiefer K, Conzen P, Rehm M. A rational approach to perioperative fluid management. Anesthesiology. 2008;109(4):723-740. https://doi.org/10.1097/ALN.0b013e3181863117
  8. Smart L, Boyd CJ, Claus MA, Bosio E, Hosgood G, Raisis A. Large-volume crystalloid fluid is associated with increased hyaluronan shedding and inflammation in a canine hemorrhagic shock model. Inflammation. 2018;41(4):1515-1523. https://doi.org/10.1007/s10753-018-0797-4
  9. Doherty M, Buggy DJ. Intraoperative fluids: how much is too much? Br J Anaesth. 2012;109(1):69-79. https://doi.org/10.1093/bja/aes171
  10. Silverstein DC, Cozzi EM, Hopkins AS, Keefe TJ. Microcirculatory effects of intravenous fluid administration in anesthetized dogs undergoing elective ovariohysterectomy. Am J Vet Res. 2014;75(9):809-817. https://doi.org/10.2460/ajvr.75.9.809
  11. Hansen B, Vigani A. Maintenance fluid therapy: isotonic versus hypotonic solutions. Vet Clin North Am Small Anim Pract. 2017;47(2):383-395. https://doi.org/10.1016/j.cvsm.2016.10.001
  12. Shin CH, Long DR, McLean D, Grabitz SD, Ladha K, Timm FP, et al. Effects of intraoperative fluid management on postoperative outcomes: a hospital registry study. Ann Surg. 2018;267(6):1084-1092. https://doi.org/10.1097/SLA.0000000000002220
  13. Holte K. Pathophysiology and clinical implications of peroperative fluid management in elective surgery. Dan Med Bull. 2010;57(7):B4156.
  14. de Aguiar ESV, Dallabrida AL, Bopp S, Rocha GLS, Franca EP, da Fonseca ET, et al. Measurement of central venous pressure by mean of central and peripheric catheters: comparison among the obtained vallues in dogs and elaboration of a correction index. Cienc Rural. 2004;34(6):1827-1831. https://doi.org/10.1590/S0103-84782004000600025
  15. Brun MV. Cirurgias no aparelho reprodutor feminino de caninos. In: Videocirurgia em Pequenos Animais. 1st ed. Rio de Janeiro: Roca; 2015, 186-213.
  16. Haskins SC. Monitoring anesthetized patients. In: Grimm KA, Lamont LA, Tranquilli WJ, Greene SA, Robertson SA, editors. Veterinary Anesthesia and Analgesia: The Fifth Edition of Lumb and Jones. Hoboken: Wiley-Blackwell; 2017, 86-113.
  17. Fitzgerald SD, Andrus CH, Baudendistel LJ, Dahms TE, Kaminski DL. Hypercarbia during carbon dioxide pneumoperitoneum. Am J Surg. 1992;163(1):186-190. https://doi.org/10.1016/0002-9610(92)90274-U
  18. Botter FCS, Taha MO, Fagundes DJ, Fagundes ATN. The role of pneumoperitoneum in the respiratory and hemodynamic evaluation in anaesthetized rats, with or without intubation. Rev Col Bras Cir. 2005;32(5):261-266. https://doi.org/10.1590/S0100-69912005000500008
  19. Caricato A, Conti G, Della Corte F, Mancino A, Santilli F, Sandroni C, et al. Effects of PEEP on the intracranial system of patients with head injury and subarachnoid hemorrhage: the role of respiratory system compliance. J Trauma. 2005;58(3):571-576. https://doi.org/10.1097/01.TA.0000152806.19198.DB
  20. Cheatham ML, Safcsak K. Intraabdominal pressure: a revised method for measurement. J Am Coll Surg. 1998;186(5):594-595. https://doi.org/10.1016/S1072-7515(98)00122-7
  21. Cheatham ML, White MW, Sagraves SG, Johnson JL, Block EF. Abdominal perfusion pressure: a superior parameter in the assessment of intra-abdominal hypertension. J Trauma. 2000;49(4):621-626. https://doi.org/10.1097/00005373-200010000-00008
  22. Bosch L, Rivera del Alamo MM, Andaluz A, Monreal L, Torrente C, Garcia-Arnas F, et al. Effects of ovariohysterectomy on intra-abdominal pressure and abdominal perfusion pressure in cats. Vet Rec. 2012;171(24):622. https://doi.org/10.1136/vr.100791
  23. Cheatham ML, Malbrain ML, Kirkpatrick A, Sugrue M, Parr M, De Waele J, et al. Results from the International Conference of Experts on Intra-abdominal Hypertension and Abdominal Compartment Syndrome. II. Recommendations. Intensive Care Med. 2007;33(6):951-962. https://doi.org/10.1007/s00134-007-0592-4
  24. Cheatham ML, Safcsak K. Is the evolving management of intra-abdominal hypertension and abdominal compartment syndrome improving survival? Crit Care Med. 2010;38(2):402-407. https://doi.org/10.1097/CCM.0b013e3181b9e9b1
  25. Horoz OO, Yildizdas D, Sari Y, Unal I, Ekinci F, Petmezci E. The relationship of abdominal perfusion pressure with mortality in critically ill pediatric patients. J Pediatr Surg. 2019;54(9):1731-1735. https://doi.org/10.1016/j.jpedsurg.2018.10.105
  26. Rivers EP, Ander DS, Powell D. Central venous oxygen saturation monitoring in the critically ill patient. Curr Opin Crit Care. 2001;7(3):204-211. https://doi.org/10.1097/00075198-200106000-00011
  27. Mitchell SC, Vinnakota A, Deo SV, Markowitz AH, Sareyyupoglu B, Elgudin Y, et al. Relationship between intraoperative serum lactate and hemoglobin levels on postoperative renal function in patients undergoing elective cardiac surgery. J Card Surg. 2018;33(6):316-321. https://doi.org/10.1111/jocs.13713
  28. Leonard IE, Cunningham AJ. Anaesthetic considerations for laparoscopic cholecystectomy. Best Pract Res Clin Anaesthesiol. 2002;16(1):1-20. https://doi.org/10.1053/bean.2001.0204
  29. Demyttenaere S, Feldman LS, Fried GM. Effect of pneumoperitoneum on renal perfusion and function: a systematic review. Surg Endosc. 2007;21(2):152-160. https://doi.org/10.1007/s00464-006-0250-x
  30. Sodha S, Nazarian S, Adshead JM, Vasdev N, Mohan-S G. Effect of pneumoperitoneum on renal function and physiology in patients undergoing robotic renal surgery. Curr Urol. 2016;9(1):1-4. https://doi.org/10.1159/000442842
  31. Hauptman JG, Richter MA, Wood SL, Nachreiner RF. Effects of anesthesia, surgery, and intravenous administration of fluids on plasma antidiuretic hormone concentrations in healthy dogs. Am J Vet Res. 2000;61(10):1273-1276. https://doi.org/10.2460/ajvr.2000.61.1273
  32. Osborne CA, Stevens JB, Lulich JP, Ulrich LK, Bird KA, Koehler LA, et al. A clinician's analysis of urinalysis. In: Osborne CA, Finco DR, editors. Canine and Feline Nephrology and Urology. 1st ed. Baltimore: Williams & Wilkins; 1995, 136-205.
  33. Gonzalez FHD, Silva SC. Introducao a Bioquimica Clinica Veterinaria. Porto Alegre: Editora da Universidade Federal do Rio Grande do Sul; 2017.
  34. DiBartola SP. Chapter 9. Introduction to acid-base disorders. In: DiBartola SP, editor. Fluid, Electrolyte, and Acid-Base Disorders in Small Animal Practice. 4th ed. St. Louis: Saunders/Elsevier; 2012, 231-252.
  35. DiBartola SP. Chapter 10. Metabolic acid-base disorders. In: DiBartola SP, editor. Fluid, Electrolyte, and Acid-Base Disorders in Small Animal Practice. 4th ed. St. Louis: Saunders/Elsevier; 2012, 253-286.
  36. Carlson GP, Bruss M. Chapter 17. Fluid, electrolyte, and acid-base balance. In: Kaneko JJ, Harvey JW, Bruss M, editors. Clinical Biochemistry of Domestic Animals. 6th ed. Boston: Elsevier Academic Press; 2008, 529-559.
  37. Mathews KA. Chapter 16. Monitoring fluid therapy and complications of fluid therapy. In: DiBartola SP, editor. Fluid, Electrolyte, and Acid-Base Disorders in Small Animal Practice. 4th ed. St. Louis: Saunders/Elsevier; 2012, 386-404.
  38. Rodriguez-Diaz JM, Hayes GM, Boesch J, Martin-Flores M, Sumner JP, Hayashi K, et al. Decreased incidence of perioperative inadvertent hypothermia and faster anesthesia recovery with increased environmental temperature: a nonrandomized controlled study. Vet Surg. 2020;49(2):256-264. https://doi.org/10.1111/vsu.13328
  39. Yasbek KVB. Hipotermia. In: Fautoni DT, editor. Anestesia em Caes e Gatos. 2nd ed. Sao Paulo: Roca; 2009, 605-610.
  40. Sessler DI. Deliberate mild hypothermia. J Neurosurg Anesthesiol. 1995;7(1):38-46. https://doi.org/10.1097/00008506-199501000-00008
  41. Gerges FJ, Kanazi GE, Jabbour-Khoury SI. Anesthesia for laparoscopy: a review. J Clin Anesth. 2006;18(1):67-78. https://doi.org/10.1016/j.jclinane.2005.01.013
  42. de Morais HS, DiBartola SP. Ventilatory and metabolic compensation in dogs with acid-base disturbances. J Vet Emerg Crit Care. 1991;1(2):39-49. https://doi.org/10.1111/j.1476-4431.1991.tb00015.x
  43. DiBartola SP, Bateman S. Chapter 14. Introduction to fluid therapy. In: DiBartola SP, editor. Fluid, Electrolyte, and Acid-Base Disorders in Small Animal Practice. 4th ed. St. Louis: Saunders/Elsevier; 2012, 331-350.
  44. Janotka M, Ostadal P. Biochemical markers for clinical monitoring of tissue perfusion. Mol Cell Biochem. 2021;476(3):1313-1326. https://doi.org/10.1007/s11010-020-04019-8