DOI QR코드

DOI QR Code

Optimization of adipogenic differentiation conditions for canine adipose-derived stem cells

  • Kim, Jong-Yeon (Department of Food and Nutrition, College of BioNano Technology, Gachon University) ;
  • Park, Eun-Jung (Department of Food and Nutrition, College of BioNano Technology, Gachon University) ;
  • Kim, Sung-Min (Department of Food and Nutrition, College of BioNano Technology, Gachon University) ;
  • Lee, Hae-Jeung (Department of Food and Nutrition, College of BioNano Technology, Gachon University)
  • 투고 : 2021.04.21
  • 심사 : 2021.06.04
  • 발행 : 2021.07.31

초록

Background: Canine adipose-derived stem cells (cADSCs) exhibit various differentiation properties and are isolated from the canine subcutaneous fat. Although cADSCs are valuable as tools for research on adipogenic differentiation, studies focusing on adipogenic differentiation methods and the underlying mechanisms are still lacking. Objectives: In this study, we aimed to establish an optimal method for adipogenic differentiation conditions of cADSCs and evaluate the role of peroxisome proliferator-activated receptor gamma (PPARγ) and estrogen receptor (ER) signaling in the adipogenic differentiation. Methods: To induce adipogenic differentiation of cADSCs, 3 different adipogenic medium conditions, MDI, DRI, and MDRI, using 3-isobutyl-1-methylxanthine (M), dexamethasone (D), insulin (I), and rosiglitazone (R) were tested. Results: MDRI, addition of PPARγ agonist rosiglitazone to MDI, was the most significantly facilitated cADSC into adipocyte. GW9662, an antagonist of PPARγ, significantly reduced adipogenic differentiation induced by rosiglitazone. Adipogenic differentiation was also stimulated when 17β-estradiol was added to MDI and DRI, and this stimulation was inhibited by the ER antagonist ICI182,780. Conclusions: Taken together, our results suggest that PPARγ and ER signaling are related to the adipogenic differentiation of cADSCs. This study could provide basic information for future research on obesity or anti-obesity mechanisms in dogs.

키워드

과제정보

We are grateful to Prof. Oh-kyeong Kweon (Seoul National University) for providing the cADSCs.

참고문헌

  1. Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C. Adipose-derived stem cells: isolation, expansion and differentiation. Methods. 2008;45(2):115-120. https://doi.org/10.1016/j.ymeth.2008.03.006
  2. Schwarz C, Leicht U, Rothe C, Drosse I, Luibl V, Rocken M, et al. Effects of different media on proliferation and differentiation capacity of canine, equine and porcine adipose derived stem cells. Res Vet Sci. 2012;93(1):457-462. https://doi.org/10.1016/j.rvsc.2011.08.010
  3. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211-228. https://doi.org/10.1089/107632701300062859
  4. Jankowski M, Dompe C, Sibiak R, Wasiatycz G, Mozdziak P, Jaskowski JM, et al. In vitro cultures of adipose-derived stem cells: an overview of methods, molecular analyses, and clinical applications. Cells. 2020;9(8):1783. https://doi.org/10.3390/cells9081783
  5. Kingham PJ, Kolar MK, Novikova LN, Novikov LN, Wiberg M. Stimulating the neurotrophic and angiogenic properties of human adipose-derived stem cells enhances nerve repair. Stem Cells Dev. 2014;23(7):741-754. https://doi.org/10.1089/scd.2013.0396
  6. Ma T, Sun J, Zhao Z, Lei W, Chen Y, Wang X, et al. A brief review: adipose-derived stem cells and their therapeutic potential in cardiovascular diseases. Stem Cell Res Ther. 2017;8(1):124. https://doi.org/10.1186/s13287-017-0585-3
  7. Hong W, Park J, Yun W, Kang PJ, Son D, Jang J, et al. Inhibitory effect of celastrol on adipogenic differentiation of human adipose-derived stem cells. Biochem Biophys Res Commun. 2018;507(1-4):236-241. https://doi.org/10.1016/j.bbrc.2018.11.014
  8. Dieudonne MN, Pecquery R, Leneveu MC, Giudicelli Y. Opposite effects of androgens and estrogens on adipogenesis in rat preadipocytes: evidence for sex and site-related specificities and possible involvement of insulin-like growth factor 1 receptor and peroxisome proliferator-activated receptor γ2. Endocrinology. 2000;141(2):649-656. https://doi.org/10.1210/en.141.2.649
  9. Farmer SR. Transcriptional control of adipocyte formation. Cell Metab. 2006;4(4):263-273. https://doi.org/10.1016/j.cmet.2006.07.001
  10. Scott MA, Nguyen VT, Levi B, James AW. Current methods of adipogenic differentiation of mesenchymal stem cells. Stem Cells Dev. 2011;20(10):1793-1804. https://doi.org/10.1089/scd.2011.0040
  11. Fayyad AM, Khan AA, Abdallah SH, Alomran SS, Bajou K, Khattak MNK. Rosiglitazone enhances browning adipocytes in association with MAPK and PI3-K pathways during the differentiation of telomerase-transformed mesenchymal stromal cells into adipocytes. Int J Mol Sci. 2019;20(7):1618. https://doi.org/10.3390/ijms20071618
  12. Foryst-Ludwig A, Kintscher U. Metabolic impact of estrogen signalling through ERalpha and ERbeta. J Steroid Biochem Mol Biol. 2010;122(1-3):74-81. https://doi.org/10.1016/j.jsbmb.2010.06.012
  13. Jeong S, Yoon M. 17β-Estradiol inhibition of PPARγ-induced adipogenesis and adipocyte-specific gene expression. Acta Pharmacol Sin. 2011;32(2):230-238. https://doi.org/10.1038/aps.2010.198
  14. Dieudonne MN, Leneveu MC, Giudicelli Y, Pecquery R. Evidence for functional estrogen receptors alpha and beta in human adipose cells: regional specificities and regulation by estrogens. Am J Physiol Cell Physiol. 2004;286(3):C655-C661. https://doi.org/10.1152/ajpcell.00321.2003
  15. Hong L, Colpan A, Peptan IA, Daw J, George A, Evans CA. 17-β estradiol enhances osteogenic and adipogenic differentiation of human adipose-derived stromal cells. Tissue Eng. 2007;13(6):1197-1203. https://doi.org/10.1089/ten.2006.0317
  16. Stubbins RE, Holcomb VB, Hong J, Nunez NP. Estrogen modulates abdominal adiposity and protects female mice from obesity and impaired glucose tolerance. Eur J Nutr. 2012;51(7):861-870. https://doi.org/10.1007/s00394-011-0266-4
  17. Kopelman PG. Obesity as a medical problem. Nature. 2000;404(6778):635-643. https://doi.org/10.1038/35007508
  18. German AJ. The growing problem of obesity in dogs and cats. J Nutr. 2006;136(7 Suppl):1940S-1946S. https://doi.org/10.1093/jn/136.7.1940S
  19. Ryu HH, Kang BJ, Park SS, Kim Y, Sung GJ, Woo HM, et al. Comparison of mesenchymal stem cells derived from fat, bone marrow, Wharton's jelly, and umbilical cord blood for treating spinal cord injuries in dogs. J Vet Med Sci. 2012;74(12):1617-1630. https://doi.org/10.1292/jvms.12-0065
  20. Ryu HH, Lim JH, Byeon YE, Park JR, Seo MS, Lee YW, et al. Functional recovery and neural differentiation after transplantation of allogenic adipose-derived stem cells in a canine model of acute spinal cord injury. J Vet Sci. 2009;10(4):273-284. https://doi.org/10.4142/jvs.2009.10.4.273
  21. Tobita M, Orbay H, Mizuno H. Adipose-derived stem cells: current findings and future perspectives. Discov Med. 2011;11(57):160-170.
  22. Animal and Plant Quarantine Agency. 2017 Animal Protection and Welfare Survey. Gimcheon: Animal and Plant Quarantine Agency; 2017.
  23. Saben J, Thakali KM, Lindsey FE, Zhong Y, Badger TM, Andres A, et al. Distinct adipogenic differentiation phenotypes of human umbilical cord mesenchymal cells dependent on adipogenic conditions. Exp Biol Med (Maywood). 2014;239(10):1340-1351. https://doi.org/10.1177/1535370214539225
  24. Lu YH, Dallner OS, Birsoy K, Fayzikhodjaeva G, Friedman JM. Nuclear Factor-Y is an adipogenic factor that regulates leptin gene expression. Mol Metab. 2015;4(5):392-405. https://doi.org/10.1016/j.molmet.2015.02.002
  25. Yu G, Floyd ZE, Wu X, Hebert T, Halvorsen YD, Buehrer BM, et al. Adipogenic differentiation of adipose-derived stem cells. Methods Mol Biol. 2011;702:193-200. https://doi.org/10.1007/978-1-61737-960-4_14
  26. Lala-Tabbert N, Fu D, Wiper-Bergeron N. Induction of CCAAT/enhancer-binding protein β expression with the phosphodiesterase inhibitor isobutylmethylxanthine improves myoblast engraftment into dystrophic muscle. Stem Cells Transl Med. 2016;5(4):500-510. https://doi.org/10.5966/sctm.2015-0169
  27. Kim SP, Ha JM, Yun SJ, Kim EK, Chung SW, Hong KW, et al. Transcriptional activation of peroxisome proliferator-activated receptor-γ requires activation of both protein kinase A and Akt during adipocyte differentiation. Biochem Biophys Res Commun. 2010;399(1):55-59. https://doi.org/10.1016/j.bbrc.2010.07.038
  28. Madsen MS, Siersbaek R, Boergesen M, Nielsen R, Mandrup S. Peroxisome proliferator-activated receptor γ and C/EBPα synergistically activate key metabolic adipocyte genes by assisted loading. Mol Cell Biol. 2014;34(6):939-954. https://doi.org/10.1128/MCB.01344-13
  29. Contador D, Ezquer F, Espinosa M, Arango-Rodriguez M, Puebla C, Sobrevia L, et al. Dexamethasone and rosiglitazone are sufficient and necessary for producing functional adipocytes from mesenchymal stem cells. Exp Biol Med (Maywood). 2015;240(9):1235-1246. https://doi.org/10.1177/1535370214566565
  30. Rosen ED, Spiegelman BM. PPARγ: a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem. 2001;276(41):37731-37734. https://doi.org/10.1074/jbc.R100034200
  31. Berger JP, Akiyama TE, Meinke PT. PPARs: therapeutic targets for metabolic disease. Trends Pharmacol Sci. 2005;26(5):244-251. https://doi.org/10.1016/j.tips.2005.03.003
  32. Farmer SR. Regulation of PPARγ activity during adipogenesis. Int J Obes. 2005;29 Suppl 1:S13-S16. https://doi.org/10.1038/sj.ijo.0802907
  33. Leesnitzer LM, Parks DJ, Bledsoe RK, Cobb JE, Collins JL, Consler TG, et al. Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662. Biochemistry. 2002;41(21):6640-6650. https://doi.org/10.1021/bi0159581
  34. Seargent JM, Yates EA, Gill JH. GW9662, a potent antagonist of PPARγ, inhibits growth of breast tumour cells and promotes the anticancer effects of the PPARγ agonist rosiglitazone, independently of PPARγ activation. Br J Pharmacol. 2004;143(8):933-937. https://doi.org/10.1038/sj.bjp.0705973
  35. Heine PA, Taylor JA, Iwamoto GA, Lubahn DB, Cooke PS. Increased adipose tissue in male and female estrogen receptor-α knockout mice. Proc Natl Acad Sci U S A. 2000;97(23):12729-12734. https://doi.org/10.1073/pnas.97.23.12729
  36. Tao Z, Zheng LD, Smith C, Luo J, Robinson A, Almeida FA, et al. Estradiol signaling mediates gender difference in visceral adiposity via autophagy. Cell Death Dis. 2018;9(3):309. https://doi.org/10.1038/s41419-018-0372-9
  37. Wada T, Ihunnah CA, Gao J, Chai X, Zeng S, Philips BJ, et al. Estrogen sulfotransferase inhibits adipocyte differentiation. Mol Endocrinol. 2011;25(9):1612-1623. https://doi.org/10.1210/me.2011-1089
  38. Hong L, Colpan A, Peptan IA. Modulations of 17-β estradiol on osteogenic and adipogenic differentiations of human mesenchymal stem cells. Tissue Eng. 2006;12(10):2747-2753. https://doi.org/10.1089/ten.2006.12.2747
  39. Pedersen SB, Kristensen K, Hermann PA, Katzenellenbogen JA, Richelsen B. Estrogen controls lipolysis by up-regulating α2A-adrenergic receptors directly in human adipose tissue through the estrogen receptor α. Implications for the female fat distribution. J Clin Endocrinol Metab. 2004;89(4):1869-1878. https://doi.org/10.1210/jc.2003-031327
  40. Wang X, Kilgore MW. Signal cross-talk between estrogen receptor alpha and beta and the peroxisome proliferator-activated receptor gamma1 in MDA-MB-231 and MCF-7 breast cancer cells. Mol Cell Endocrinol. 2002;194(1-2):123-133. https://doi.org/10.1016/S0303-7207(02)00154-5
  41. Surazynski A, Jarzabek K, Miltyk W, Wolczynski S, Palka J. Estrogen-dependent regulation of PPAR-gamma signaling on collagen biosynthesis in adenocarcinoma endometrial cells. Neoplasma. 2009;56(5):448-454. https://doi.org/10.4149/neo_2009_05_448
  42. Boucher JG, Ahmed S, Atlas E. Bisphenol S induces adipogenesis in primary human preadipocytes from female donors. Endocrinology. 2016;157(4):1397-1407. https://doi.org/10.1210/en.2015-1872