DOI QR코드

DOI QR Code

Melatonin mitigates the adverse effect of hypoxia during myocardial differentiation in mouse embryonic stem cells

  • Lee, Jae-Hwan (Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University) ;
  • Yoo, Yeong-Min (Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University) ;
  • Lee, Bonn (Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University) ;
  • Jeong, SunHwa (Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University) ;
  • Tran, Dinh Nam (Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University) ;
  • Jeung, Eui-Bae (Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University)
  • 투고 : 2021.03.30
  • 심사 : 2021.06.20
  • 발행 : 2021.07.31

초록

Background: Hypoxia causes oxidative stress and affects cardiovascular function and the programming of cardiovascular disease. Melatonin promotes antioxidant enzymes such as superoxide dismutase, glutathione reductase, glutathione peroxidase, and catalase. Objectives: This study aims to investigate the correlation between melatonin and hypoxia induction in cardiomyocytes differentiation. Methods: Mouse embryonic stem cells (mESCs) were induced to myocardial differentiation. To demonstrate the influence of melatonin under hypoxia, mESC was pretreated with melatonin and then cultured in hypoxic condition. The cardiac beating ratio of the mESC-derived cardiomyocytes, mRNA and protein expression levels were investigated. Results: Under hypoxic condition, the mRNA expression of cardiac-lineage markers (Brachyury, Tbx20, and cTn1) and melatonin receptor (Mtnr1a) was reduced. The mRNA expression of cTn1 and the beating ratio of mESCs increased when melatonin was treated simultaneously with hypoxia, compared to when only exposed to hypoxia. Hypoxia-inducible factor (HIF)-1α protein decreased with melatonin treatment under hypoxia, and Mtnr1a mRNA expression increased. When the cells were exposed to hypoxia with melatonin treatment, the protein expressions of phospho-extracellular signal-related kinase (p-ERK) and Bcl-2-associated X proteins (Bax) decreased, however, the levels of phospho-protein kinase B (p-Akt), phosphatidylinositol 3-kinase (PI3K), B-cell lymphoma 2 (Bcl-2) proteins, and antioxidant enzymes including Cu/Zn-SOD, Mn-SOD, and catalase were increased. Competitive melatonin receptor antagonist luzindole blocked the melatonin-induced effects. Conclusions: This study demonstrates that hypoxia inhibits cardiomyocytes differentiation and melatonin partially mitigates the adverse effect of hypoxia in myocardial differentiation by regulating apoptosis and oxidative stress through the p-AKT and PI3K pathway.

키워드

과제정보

This research was funded by National Research Foundation of Korea (NRF) (2017R1A2B2005031).

참고문헌

  1. Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359(1):61-73. https://doi.org/10.1056/NEJMra0708473
  2. Barker DJ, Osmond C, Simmonds SJ, Wield GA. The relation of small head circumference and thinness at birth to death from cardiovascular disease in adult life. BMJ. 1993;306(6875):422-426. https://doi.org/10.1136/bmj.306.6875.422
  3. Zhang L. Prenatal hypoxia and cardiac programming. J Soc Gynecol Investig. 2005;12(1):2-13. https://doi.org/10.1016/j.jsgi.2004.09.004
  4. Williams SJ, Hemmings DG, Mitchell JM, McMillen IC, Davidge ST. Effects of maternal hypoxia or nutrient restriction during pregnancy on endothelial function in adult male rat offspring. J Physiol. 2005;565(Pt 1):125-135. https://doi.org/10.1113/jphysiol.2005.084889
  5. Akira M, Yoshiyuki S. Placental circulation, fetal growth, and stiffness of the abdominal aorta in newborn infants. J Pediatr. 2006;148(1):49-53. https://doi.org/10.1016/j.jpeds.2005.06.044
  6. Giordano FJ. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest. 2005;115(3):500-508. https://doi.org/10.1172/JCI200524408
  7. Giussani DA, Spencer JA, Moore PJ, Bennet L, Hanson MA. Afferent and efferent components of the cardiovascular reflex responses to acute hypoxia in term fetal sheep. J Physiol. 1993;461(1):431-449. https://doi.org/10.1113/jphysiol.1993.sp019521
  8. Zhou T, Chuang CC, Zuo L. Molecular characterization of reactive oxygen species in myocardial ischemia-reperfusion injury. BioMed Res Int. 2015;2015:864946. https://doi.org/10.1155/2015/864946
  9. Kurian GA, Rajagopal R, Vedantham S, Rajesh M. The role of oxidative stress in myocardial ischemia and reperfusion injury and remodeling: revisited. Oxid Med Cell Longev. 2016;2016:1656450. https://doi.org/10.1155/2016/1656450
  10. Lee JH, Yoo YM, Jung EM, Ahn CH, Jeung EB. Inhibitory effect of octyl-phenol and bisphenol A on calcium signaling in cardiomyocyte differentiation of mouse embryonic stem cells. J Physiol Pharmacol. 2019;70(3):435-442.
  11. Rajala K, Pekkanen-Mattila M, Aalto-Setala K. Cardiac differentiation of pluripotent stem cells. Stem Cells Int. 2011;2011:383709. https://doi.org/10.4061/2011/383709
  12. Hesse M, Welz A, Fleischmann BK. Heart regeneration and the cardiomyocyte cell cycle. Pflugers Arch. 2018;470(2):241-248. https://doi.org/10.1007/s00424-017-2061-4
  13. Reiter RJ, Tan DX, Jou MJ, Korkmaz A, Manchester LC, Paredes SD. Biogenic amines in the reduction of oxidative stress: melatonin and its metabolites. Neuroendocrinol Lett. 2008;29(4):391-398.
  14. Zhang HM, Zhang Y. Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res. 2014;57(2):131-146. https://doi.org/10.1111/jpi.12162
  15. Manchester LC, Coto-Montes A, Boga JA, Andersen LP, Zhou Z, Galano A, et al. Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res. 2015;59(4):403-419. https://doi.org/10.1111/jpi.12267
  16. Richter HG, Hansell JA, Raut S, Giussani DA. Melatonin improves placental efficiency and birth weight and increases the placental expression of antioxidant enzymes in undernourished pregnancy. J Pineal Res. 2009;46(4):357-364. https://doi.org/10.1111/j.1600-079X.2009.00671.x
  17. Itani N, Skeffington KL, Beck C, Niu Y, Giussani DA. Melatonin rescues cardiovascular dysfunction during hypoxic development in the chick embryo. J Pineal Res. 2016;60(1):16-26. https://doi.org/10.1111/jpi.12283
  18. Hu S, Zhu P, Zhou H, Zhang Y, Chen Y. Melatonin-induced protective effects on cardiomyocytes against reperfusion injury partly through modulation of IP3R and SERCA2a via activation of ERK1. Arq Bras Cardiol. 2018;110(1):44-51.
  19. Reiter RJ, Tan DX, Paredes SD, Fuentes-Broto L. Beneficial effects of melatonin in cardiovascular disease. Ann Med. 2010;42(4):276-285. https://doi.org/10.3109/07853890903485748
  20. Nduhirabandi F, Maarman GJ. Melatonin in heart failure: a promising therapeutic strategy? Molecules. 2018;23(7):1819. https://doi.org/10.3390/molecules23071819
  21. Shi L, Liang F, Zheng J, Zhou K, Chen S, Yu J, et al. Melatonin regulates apoptosis and autophagy via ROSMST1 pathway in subarachnoid hemorrhage. Front Mol Neurosci. 2018;11:93. https://doi.org/10.3389/fnmol.2018.00093
  22. Lee SJ, Lee HJ, Jung YH, Kim JS, Choi SH, Han HJ. Melatonin inhibits apoptotic cell death induced by Vibrio vulnificus VvhA via melatonin receptor 2 coupling with NCF-1. Cell Death Dis. 2018;9(2):48. https://doi.org/10.1038/s41419-017-0083-7
  23. Reiter RJ, Paredes SD, Manchester LC, Tan DX. Reducing oxidative/nitrosative stress: a newly-discovered genre for melatonin. Crit Rev Biochem Mol Biol. 2009;44(4):175-200. https://doi.org/10.1080/10409230903044914
  24. Sarker U, Oba S. Catalase, superoxide dismutase and ascorbate-glutathione cycle enzymes confer drought tolerance of Amaranthus tricolor. Sci Rep. 2018;8(1):16496. https://doi.org/10.1038/s41598-018-34944-0
  25. Lee JG, Woo YS, Park SW, Seog DH, Seo MK, Bahk WM. The neuroprotective effects of melatonin: possible role in the pathophysiology of neuropsychiatric disease. Brain Sci. 2019;9(10):285. https://doi.org/10.3390/brainsci9100285
  26. Lipartiti M, Franceschini D, Zanoni R, Gusella M, Giusti P, Cagnoli CM, et al. Neuroprotective effects of melatonin. Adv Exp Med Biol. 1996;398:315-321. https://doi.org/10.1007/978-1-4613-0381-7_49
  27. Dubocovich ML, Delagrange P, Krause DN, Sugden D, Cardinali DP, Olcese J. International union of basic and clinical pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev. 2010;62(3):343-380. https://doi.org/10.1124/pr.110.002832
  28. Guerra-Librero A, Fernandez-Gil BI, Florido J, Martinez-Ruiz L, Rodriguez-Santana C, Shen YQ, et al. Melatonin targets metabolism in head and neck cancer cells by regulating mitochondrial structure and function. Antioxidants. 2021;10(4):603. https://doi.org/10.3390/antiox10040603
  29. Kudova J, Vasicek O, Ciz M, Kubala L. Melatonin promotes cardiomyogenesis of embryonic stem cells via inhibition of HIF-1α stabilization. J Pineal Res. 2016;61(4):493-503. https://doi.org/10.1111/jpi.12366
  30. Kim CW, Go RE, Ko EB, Jeung EB, Kim MS, Choi KC. Effects of cigarette smoke components on myocardial differentiation of mouse embryonic stem cells. Environ Toxicol. 2020;35(1):66-77. https://doi.org/10.1002/tox.22843
  31. Cui P, Yu M, Luo Z, Dai M, Han J, Xiu R, et al. Intracellular signaling pathways involved in cell growth inhibition of human umbilical vein endothelial cells by melatonin. J Pineal Res. 2008;44(1):107-114. https://doi.org/10.1111/j.1600-079X.2007.00496.x
  32. Nah SS, Won HJ, Park HJ, Ha E, Chung JH, Cho HY, et al. Melatonin inhibits human fibroblast-like synoviocyte proliferation via extracellular signal-regulated protein kinase/P21(CIP1)/P27(KIP1) pathways. J Pineal Res. 2009;47(1):70-74. https://doi.org/10.1111/j.1600-079X.2009.00689.x
  33. Brazil DP, Hemmings BA. Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci. 2001;26(11):657-664. https://doi.org/10.1016/S0968-0004(01)01958-2
  34. Grutzner U, Keller M, Bach M, Kiemer AK, Meissner H, Bilzer M, et al. PI 3-kinase pathway is responsible for antiapoptotic effects of atrial natriuretic peptide in rat liver transplantation. World J Gastroenterol. 2006;12(7):1049-1055. https://doi.org/10.3748/wjg.v12.i7.1049
  35. Fruehauf JP, Meyskens FL Jr. Reactive oxygen species: a breath of life or death? Clin Cancer Res. 2007;13(3):789-794. https://doi.org/10.1158/1078-0432.CCR-06-2082
  36. Migdal C, Serres M. Reactive oxygen species and oxidative stress. Med Sci (Paris). 2011;27(4):405-412. https://doi.org/10.1051/medsci/2011274017
  37. Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrera F, Martin V, et al. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res. 2004;36(1):1-9. https://doi.org/10.1046/j.1600-079X.2003.00092.x
  38. Bongiovanni B, De Lorenzi P, Ferri A, Konjuh C, Rassetto M, Evangelista de Duffard AM, et al. Melatonin decreases the oxidative stress produced by 2,4-dichlorophenoxyacetic acid in rat cerebellar granule cells. Neurotox Res. 2007;11(2):93-99. https://doi.org/10.1007/BF03033388
  39. Jiki Z, Lecour S, Nduhirabandi F. Cardiovascular benefits of dietary melatonin: a myth or a reality? Front Physiol. 2018;9:528. https://doi.org/10.3389/fphys.2018.00528
  40. Han D, Wang Y, Chen J, Zhang J, Yu P, Zhang R, et al. Activation of melatonin receptor 2 but not melatonin receptor 1 mediates melatonin-conferred cardioprotection against myocardial ischemia/reperfusion injury. J Pineal Res. 2019;67(1):e12571. https://doi.org/10.1111/jpi.12571