DOI QR코드

DOI QR Code

Prevalence and antimicrobial resistance of Klebsiella species isolated from clinically ill companion animals

  • Lee, Dan (Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University) ;
  • Oh, Jae Young (Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University) ;
  • Sum, Samuth (Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University) ;
  • Park, Hee-Myung (Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University)
  • Received : 2020.08.10
  • Accepted : 2020.12.28
  • Published : 2021.03.31

Abstract

Background: Klebsiella spp. is an important conditional pathogen in humans and animals. However, due to the indiscriminate use of antibiotics, the incidence of antimicrobial resistance has increased. Objectives: The purpose of this study was to investigate antimicrobial resistance in strains of Klebsiella strains and the phylogenetic relatedness of extended-spectrum cephalosporin (ESC)-resistance among Klebsiella strains isolated from clinically ill companion animals. Methods: A total of 336 clinical specimens were collected from animal hospitals. Identification of Klebsiella species, determination of minimum inhibitory concentrations, detection of ESC resistance genes, polymerase chain reaction-based replicon typing of plasmids by conjugation, and multilocus sequence typing were performed. Results: Forty-three Klebsiella strains were isolated and, subsequently, 28 were identified as K. pneumoniae, 11 as K. oxytoca, and 4 as K. aerogenes. Eleven strains were isolated from feces, followed by 10 from ear, 7 from the nasal cavity, 6 from urine, 5 from genitals, and 4 from skin. Klebsiella isolates showed more than 40% resistance to penicillin, cephalosporin, fluoroquinolone, and aminoglycoside. ESCresistance genes, CTX-M groups (CTX-M-3, CTX-M-15, and CTX-M-65), and AmpC (CMY-2 and DHA-1) were most common in the K. pneumoniae strains. Some K. pneumoniae carrying CTX-M or AmpC were transferred via IncFII plasmids. Two sequence types, ST709 and ST307, from K. pneumoniae were most common. Conclusions: In conclusion, this is the first report on the prevalence, ESCresistance genotypes, and sequence types of Klebsiella strains isolated from clinically ill companion animals. The combination of infectious diseases and antimicrobial resistance by Klebsiella in companion animals suggest that, in clinical veterinary, antibiotic selection should be made carefully and in conjunction with the disease diagnosis.

Keywords

Acknowledgement

The authors are grateful to VIP (Seocho branch), Choong-Hyun, Lucid, Good-Papa and Smart animal medical centers for their assistance in this study.

References

  1. Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis. 2009;9(4):228-236. https://doi.org/10.1016/S1473-3099(09)70054-4
  2. Paterson DL. Resistance in gram-negative bacteria: Enterobacteriaceae. Am J Infect Control. 2006;34(5 Suppl 1):S20-S28. https://doi.org/10.1016/j.ajic.2006.05.238
  3. Timofte D, Maciuca IE, Evans NJ, Williams H, Wattret A, Fick JC, et al. Detection and molecular characterization of Escherichia coli CTX-M-15 and Klebsiella pneumoniae SHV-12 β-lactamases from bovine mastitis isolates in the United Kingdom. Antimicrob Agents Chemother. 2014;58(2):789-794. https://doi.org/10.1128/AAC.00752-13
  4. Cavana P, Tomesello A, Ripanti D, Nebbia P, Farca AM. Multiple organ dysfunction syndrome in a dog with Klebsiella pneumoniae septicemia. Schweiz Arch Tierheilkd. 2009;151(2):69-74. https://doi.org/10.1024/0036-7281.151.2.69
  5. Roberts DE, McClain HM, Hansen DS, Currin P, Howerth EW. An outbreak of Klebsiella pneumoniae infection in dogs with severe enteritis and septicemia. J Vet Diagn Invest. 2000;12(2):168-173. https://doi.org/10.1177/104063870001200215
  6. Rubin JE, Pitout JD. Extended-spectrum β-lactamase, carbapenemase and AmpC producing Enterobacteriaceae in companion animals. Vet Microbiol. 2014;170(1-2):10-18. https://doi.org/10.1016/j.vetmic.2014.01.017
  7. Muller-Schulte E, Tuo MN, Akoua-Koffi C, Schaumburg F, Becker SL. High prevalence of ESBL-producing Klebsiella pneumoniae in clinical samples from central Cote d'Ivoire. Int J Infect Dis. 2020;91:207-209. https://doi.org/10.1016/j.ijid.2019.11.024
  8. Guardabassi L, Schwarz S, Lloyd DH. Pet animals as reservoirs of antimicrobial-resistant bacteria. J Antimicrob Chemother. 2004;54(2):321-332. https://doi.org/10.1093/jac/dkh332
  9. Stolle I, Prenger-Berninghoff E, Stamm I, Scheufen S, Hassdenteufel E, Guenther S, et al. Emergence of OXA-48 carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in dogs. J Antimicrob Chemother. 2013;68(12):2802-2808. https://doi.org/10.1093/jac/dkt259
  10. Donati V, Feltrin F, Hendriksen RS, Svendsen CA, Cordaro G, Garcia-Fernandez A, et al. Extendedspectrum-beta-lactamases, AmpC beta-lactamases and plasmid mediated quinolone resistance in Klebsiella spp. from companion animals in Italy. PLoS One. 2014;9(3):e90564. https://doi.org/10.1371/journal.pone.0090564
  11. Haenni M, Ponsin C, Metayer V, Medaille C, Madec JY. Veterinary hospital-acquired infections in pets with a ciprofloxacin-resistant CTX-M-15-producing Klebsiella pneumoniae ST15 clone. J Antimicrob Chemother. 2012;67(3):770-771. https://doi.org/10.1093/jac/dkr527
  12. Poirel L, Nordmann P, Ducroz S, Boulouis HJ, Arne P, Millemann Y. Extended-spectrum β-lactamase CTX-M-15-producing Klebsiella pneumoniae of sequence type ST274 in companion animals. Antimicrob Agents Chemother. 2013;57(5):2372-2375. https://doi.org/10.1128/AAC.02622-12
  13. Hidalgo L, Gutierrez B, Ovejero CM, Carrilero L, Matrat S, Saba CK, et al. Klebsiella pneumoniae sequence type 11 from companion animals bearing ArmA methyltransferase, DHA-1 β-lactamase, and QnrB4. Antimicrob Agents Chemother. 2013;57(9):4532-4534. https://doi.org/10.1128/AAC.00491-13
  14. Wohlwend N, Endimiani A, Francey T, Perreten V. Third-generation-cephalosporin-resistant Klebsiella pneumoniae isolates from humans and companion animals in Switzerland: spread of a DHA-producing sequence type 11 clone in a veterinary setting. Antimicrob Agents Chemother. 2015;59(5):2949-2955. https://doi.org/10.1128/AAC.04408-14
  15. Liu Y, Yang Y, Chen Y, Xia Z. Antimicrobial resistance profiles and genotypes of extended-spectrum β-lactamase- and AmpC β-lactamase-producing Klebsiella pneumoniae isolated from dogs in Beijing, China. J Glob Antimicrob Resist. 2017;10:219-222. https://doi.org/10.1016/j.jgar.2017.06.006
  16. Lee CH, Liu JW, Li CC, Chien CC, Tang YF, Su LH. Spread of ISCR1 elements containing blaDHA-1 and multiple antimicrobial resistance genes leading to increase of flomoxef resistance in extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2011;55(9):4058-4063. https://doi.org/10.1128/AAC.00259-11
  17. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, TwentyEighth informational Supplement. 28th ed. Wayne, PA: Clinical and Laboratory Standard Institute; 2018.
  18. Pitout JD, Hossain A, Hanson ND. Phenotypic and molecular detection of CTX-M-beta-lactamases produced by Escherichia coli and Klebsiella spp. J Clin Microbiol. 2004;42(12):5715-5721. https://doi.org/10.1128/JCM.42.12.5715-5721.2004
  19. Liu XQ, Liu YR. Detection and genotype analysis of AmpC β-lactamase in Klebsiella pneumoniae from tertiary hospitals. Exp Ther Med. 2016;12(1):480-484. https://doi.org/10.3892/etm.2016.3295
  20. Jacoby GA, Han P. Detection of extended-spectrum beta-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli. J Clin Microbiol. 1996;34(4):908-911. https://doi.org/10.1128/jcm.34.4.908-911.1996
  21. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods. 2005;63(3):219-228. https://doi.org/10.1016/j.mimet.2005.03.018
  22. Diancourt L, Passet V, Verhoef J, Grimont PA, Brisse S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol. 2005;43(8):4178-4182. https://doi.org/10.1128/JCM.43.8.4178-4182.2005
  23. Ewers C, Stamm I, Pfeifer Y, Wieler LH, Kopp PA, Schonning K, et al. Clonal spread of highly successful ST15-CTX-M-15 Klebsiella pneumoniae in companion animals and horses. J Antimicrob Chemother. 2014;69(10):2676-2680. https://doi.org/10.1093/jac/dku217
  24. Harada K, Shimizu T, Mukai Y, Kuwajima K, Sato T, Usui M, et al. Phenotypic and molecular characterization of antimicrobial resistance in Klebsiella spp. isolates from companion animals in Japan: clonal dissemination of multidrug-resistant extended-spectrum β-lactamase-producing Klebsiella pneumoniae. Front Microbiol. 2016;7:1021. https://doi.org/10.3389/fmicb.2016.01021
  25. Tamma PD, Goodman KE, Harris AD, Tekle T, Roberts A, Taiwo A, et al. Comparing the outcomes of patients with carbapenemase-producing and non-carbapenemase-producing carbapenem-resistant Enterobacteriaceae bacteremia. Clin Infect Dis. 2017;64(3):257-264. https://doi.org/10.1093/cid/ciw741
  26. Hong JS, Song W, Park HM, Oh JY, Chae JC, Shin S, et al. Clonal Spread of Extended-Spectrum Cephalosporin-Resistant Enterobacteriaceae Between Companion Animals and Humans in South Korea. Front Microbiol. 2019;10:1371. https://doi.org/10.3389/fmicb.2019.01371
  27. Maeyama Y, Taniguchi Y, Hayashi W, Ohsaki Y, Osaka S, Koide S, et al. Prevalence of ESBL/AmpC genes and specific clones among the third-generation cephalosporin-resistant Enterobacteriaceae from canine and feline clinical specimens in Japan. Vet Microbiol. 2018;216:183-189. https://doi.org/10.1016/j.vetmic.2018.02.020
  28. Carvalho I, Alonso CA, Silva V, Pimenta P, Cunha R, Martins C, et al. Extended-spectrum beta-lactamase-producing Klebsiella pneumoniae isolated from healthy and sick dogs in Portugal. Microb Drug Resist. 2020;26(6):709-715. https://doi.org/10.1089/mdr.2019.0205
  29. Zhang PL, Shen X, Chalmers G, Reid-Smith RJ, Slavic D, Dick H, et al. Prevalence and mechanisms of extended-spectrum cephalosporin resistance in clinical and fecal Enterobacteriaceae isolates from dogs in Ontario, Canada. Vet Microbiol. 2018;213:82-88. https://doi.org/10.1016/j.vetmic.2017.11.020
  30. Mansour W, Grami R, Ben Haj Khalifa A, Dahmen S, Chatre P, Haenni M, et al. Dissemination of multidrug-resistant blaCTX-M-15/IncFIIk plasmids in Klebsiella pneumoniae isolates from hospital- and community-acquired human infections in Tunisia. Diagn Microbiol Infect Dis. 2015;83(3):298-304. https://doi.org/10.1016/j.diagmicrobio.2015.07.023
  31. Lohr IH, Hulter N, Bernhoff E, Johnsen PJ, Sundsfjord A, Naseer U. Persistence of a pKPN3-like CTX-M-15-encoding IncFIIK plasmid in a Klebsiella pneumonia ST17 host during two years of intestinal colonization. PLoS One. 2015;10(3):e0116516. https://doi.org/10.1371/journal.pone.0116516
  32. Apostolakos I, Feudi C, Eichhorn I, Palmieri N, Fasolato L, Schwarz S, et al. High-resolution characterisation of ESBL/pAmpC-producing Escherichia coli isolated from the broiler production pyramid. Sci Rep. 2020;10(1):11123. https://doi.org/10.1038/s41598-020-68036-9
  33. Cha MK, Kang CI, Kim SH, Chung DR, Peck KR, Lee NY, et al. High prevalence of CTX-M-15-type extended-spectrum β-lactamase among AmpC β-lactamase-producing Klebsiella pneumoniae isolates causing bacteremia in Korea. Microb Drug Resist. 2018;24(7):1002-1005. https://doi.org/10.1089/mdr.2017.0362
  34. Lee H, Yoon EJ, Kim D, Jeong SH, Won EJ, Shin JH, et al. Antimicrobial resistance of major clinical pathogens in South Korea, May 2016 to April 2017: first one-year report from Kor-GLASS. Euro Surveill. 2018;23(42):1800047.
  35. Wyres KL, Hawkey J, Hetland MA, Fostervold A, Wick RR, Judd LM, et al. Emergence and rapid global dissemination of CTX-M-15-associated Klebsiella pneumoniae strain ST307. J Antimicrob Chemother. 2019;74(3):577-581. https://doi.org/10.1093/jac/dky492
  36. Yoon EJ, Kim JO, Kim D, Lee H, Yang JW, Lee KJ, et al. Klebsiella pneumoniae carbapenemase producers in South Korea between 2013 and 2015. Front Microbiol. 2018;9:56-63. https://doi.org/10.3389/fmicb.2018.00056
  37. Ahn S, Sung JY, Kim H, Kim MS, Hwang Y, Jong S, et al. Molecular epidemiology and characterization of carbapenemase-producing Enterobacteriaceae isolated at a university hospital in Korea during 4-year period. Ann Clin Microbiol. 2016;19(2):39-47. https://doi.org/10.5145/ACM.2016.19.2.39