DOI QR코드

DOI QR Code

A comprehensive review of the Fenton-based approaches focusing on landfill leachate treatment

  • Hussain, Mujtaba (Department of Environmental and Management Studies, Al-Falah University) ;
  • Mahtab, Mohd Salim (Department of Civil Engineering, Z. H. College of Engineering and Technology, Aligarh Muslim University) ;
  • Farooqi, Izharul Haq (Department of Civil Engineering, Z. H. College of Engineering and Technology, Aligarh Muslim University)
  • Received : 2020.10.17
  • Accepted : 2021.03.17
  • Published : 2021.03.25

Abstract

Landfilling is the most commonly adopted method for a large quantity of waste disposal. But, the main concern related to landfills is the generation of leachate. The leachate is high strength wastewater that is usually characterized by the presence of high molecular recalcitrant organics. Several conventional methods are adopted for leachate treatment. However, these methods are only suitable for young leachate, having high biodegradability and low toxicity levels. The mature and stabilized leachate needs advanced technologies for its effective treatment. Advanced oxidation processes (AOPs) are very suitable for such complex wastewater treatment as reported in the literature. After going through the literature survey, it can be concluded that Fenton-based approaches are effective for the treatment of various high/low strength wastewaters treatment. The applications of the Fenton-based approaches are widely adopted and well recognized due to their simplicity, cost-effectiveness, and reliability for the reduction of high chemical oxygen demand (COD) as reported in several studies. Besides, the process is relatively economical due to fewer chemical, non-sophisticated instruments, and low energy requirements. In this review, the conventional and advanced Fenton's approaches are explained with their detailed reaction mechanisms and applications for landfill leachate treatment. The effect of influencing factors like pH, the dosage of chemicals, nature of reaction matrix, and reagent ratio on the treatment efficiencies are also emphasized. Furthermore, the discussion regarding the reduction of chemical oxygen demand (COD) and color, increase in biodegradability, removal of humic acids from leachate, combined processes, and the pre/post-treatment options are highlighted. The scope of future studies is summarized to attain sustainable solutions for restrictions associated with these methods for effective leachate treatment.

Keywords

References

  1. Ahmadi, M., Ramavandi, B. and Sahebi, S. (2015), "Efficient degradation of a biorecalcitrant pollutant from wastewater using a fluidized catalyst-bed reactor", Chem. Eng. Commun., 202(8), 1118-1129. https://doi.org/10.1080/00986445.2014.907567.
  2. Altin, A. (2008), "An alternative type of photoelectro-Fenton process for the treatment of landfill leachate", Sep. Purif. Technol., 61(3), 391-397. https://doi.org/10.1016/j.seppur.2007.12.004.
  3. Amor, C., De Torres-Socias, E., Peres, J.A., Maldonado, M.I., Oller, I., Malato, S. and Lucas, M.S. (2015), "Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photoFenton processes", J. Hazard. Mater, 286, 261-268. https://doi.org/10.1016/j.jhazmat.2014.12.036.
  4. Artiola‐Fortuny, J. and Fuller, W.H. (1982), "Humic substances in landfill leachates: I. Humic acid extraction and identification", J. Environ. Qual., 11(4), 663-669. https://doi.org/10.2134/jeq1982.00472425001100040021x.
  5. Ataei, A., Mirsaeed, M.G., Choi, J.K. and Lashkarboluki, R. (2015), "Application of ozone treatment in cooling water systems for energy and chemical conservation", Adv. Environ. Res., 4(3), 155-172. http://doi.org/10.12989/aer.2015.4.3.155.
  6. Avetta, P., Pensato, A., Minella, M., Malandrino, M., Maurino, V., Minero, C. and Vione, D. (2015), "Activation of persulfate by irradiated magnetite: Implications for the degradation of phenol under heterogeneous photo-Fenton-like conditions", Environ. Sci. Technol., 49(2), 1043-1050. https://doi.org/10.1021/es503741d.
  7. Aziz, H.A., Alias, S., Adlan, M. N., Asaari, A.H. and Zahari, M.S. (2007), "Colour removal from landfill leachate by coagulation and flocculation processes", Bioresource Technol., 98(1), 218-220. https://doi.org/10.1016/j.biortech.2005.11.013.
  8. Babuponnusami, A. and Muthukumar, K. (2014), "A review on Fenton and improvements to the Fenton process for wastewater treatment", J. Environ. Chem. Eng., 2(1), 557-572. https://doi.org/10.1016/j.jece.2013.10.011.
  9. Bandala, E.R., Tiro, J.B., Lujan, M., Camargo, F.J., Sanchez-Salas, J.L., Reyna, S. and Torres, L.G. (2013), "Petrochemical effluent treatment using natural coagulants and an aerobic biofilter", Adv. Environ. Res., 2(3), 229-243. http://doi.org/10.12989/aer.2013.2.3.229.
  10. Barbusinski, K. and Filipek, K. (2000), "Aerobic sludge digestion in the presence of chemical oxidizing agents part II. Fenton's reagent", Pol. J. Environ. Stud., 9(3), 145-149.
  11. Bello, M.M., Raman, A.A.A. and Asghar, A. (2019), "A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment", Process Saf. Environ. Protect., 126,119-140. https://doi.org/10.1016/j.psep.2019.03.028.
  12. Bielski, B.H., Cabelli, D.E., Arudi, R.L. and Ross, A.B. (1985), "Reactivity of HO2/O2 radicals in aqueous solution", J. Phys. Chem. Ref. Data, 14(4), 1041-1100. https://doi.org/10.1063/1.555739.
  13. Biglarijoo, N., Mirbagheri, S. A., Ehteshami, M. and Ghaznavi, S.M. (2016), "Optimization of Fenton process using response surface methodology and analytic hierarchy process for landfill leachate treatment", Process Saf. Environ. Protect., 104, 150-160. https://doi.org/10.1016/j.psep.2016.08.019.
  14. Blanco, J., Malato, S., Milow, B., Maldonado, M.I., Fallmann, H., Krutzler, T. and Bauer, R. (1999), "Techno-economical assessment of solar detoxification systems with compound parabolic collectors", J. Physique IV, 9(PR3), Pr3-259. https://doi.org/10.1051/jp4:1999339.
  15. Boye, B., Dieng, M.M. and Brillas, E. (2003), "Anodic oxidation, electro-Fenton and photoelectro-Fenton treatments of 2, 4, 5-trichlorophenoxyacetic acid", J. Electroanal. Chem., 557, 135-146. https://doi.org/10.1016/S0022-0728(03)00366-8.
  16. Brillas, E., Banos, M.A. and Garrido, J.A. (2003), "Mineralization of herbicide 3, 6-dichloro-2-methoxybenzoic acid in aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton", Electrochim. Acta, 48(12), 1697-1705. https://doi.org/10.1016/S0013-4686(03)00142-7.
  17. Brillas, E., Sires, I. and Oturan, M.A. (2009), "Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry", Chem. Rev., 109(12), 6570-6631. https://doi.org/10.1021/cr900136g.
  18. Calace, N., Liberatori, A., Petronio, B.M. and Pietroletti, M. (2001), "Characteristics of different molecular weight fractions of organic matter in landfill leachate and their role in soil sorption of heavy metals", Environ. Pollut., 113(3), 331-339. https://doi.org/10.1016/S0269-7491(00)00186-X.
  19. Chatzimarkou, A. and Stalikas, C. (2020), "Adsorptive removal of Estriol from water using graphene-based materials and their magnetite composites: Heterogeneous fenton-like non-toxic degradation on magnetite/graphene oxide", Int. J. Environ. Res., 1-19. https://doi.org/10.1007/s41742-020-00255-4.
  20. Cifci, D.I. and Meric, S. (2020), "Synthesis of magnetite iron pumice composite for heterogeneous Fentonlike oxidation of dyes", Adv. Environ. Res., 9(3), 161-173. https://doi.org/10.12989/aer.2020.9.3.161.
  21. Clarizia, L., Russo, D., Di Somma, I., Marotta, R. and Andreozzi, R. (2017), "Homogeneous photo-Fenton processes at near neutral pH: a review", Appl. Catal. B Environ., 209, 358-371. http://dx.doi.org/10.1016/j.apcatb.2017.03.011.
  22. Cortez, S., Teixeira, P., Oliveira, R. and Mota, M. (2010), "Fenton's oxidation as post-treatment of a mature municipal landfill leachate", Int. J. Environ. Sci. Eng., 2(1), 40-43.
  23. Da Costa, F.M., Daflon, S.D.A., Bila, D.M., Da Fonseca, F.V. and Campos, J.C. (2018), "Evaluation of the biodegradability and toxicity of landfill leachates after pretreatment using advanced oxidative processes", Waste Manage., 76, 606-613. https://doi.org/10.1016/j.wasman.2018.02.030.
  24. Dasgupta, B., Yadav, V.L. and Mondal, M.K. (2013), "Seasonal characterization and present status of municipal solid waste (MSW) management in Varanasi, India", Adv. Environ. Res., 2(1), 51-60. http://doi.org/10.12989/aer.2013.2.1.051.
  25. De Dios, M.A .F., del Campo, A.G., Fernandez, F.J., Rodrigo, M., Pazos, M. and Sanroman, M.A . (2013), "Bacterial-fungal interactions enhance power generation in microbial fuel cells and drive dye decolourisation by an ex situ and in situ electro-Fenton process", Bioresource Technol., 148, 39-46. https://doi.org/10.1016/j.biortech.2013.08.084.
  26. De Heredia, J.B., Torregrosa, J., Dominguez, J.R. and Peres, J.A. (2001), "Kinetic model for phenolic compound oxidation by Fenton's reagent", Chemosphere, 45(1), 85-90. https://doi.org/10.1016/S0045-6535(01)00056-X.
  27. De Laat, J., Dao, Y.H., El Najjar, N.H. and Daou, C. (2011), "Effect of some parameters on the rate of the catalysed decomposition of hydrogen peroxide by iron (III)-nitrilotriacetate in water", Water Res., 45(17), 5654-5664. https://doi.org/10.1016/j.watres.2011.08.028.
  28. De Laat, J., Gallard, H., Ancelin, S. and Legube, B. (1999), "Comparative study of the oxidation of atrazine and acetone by H2O2/UV, Fe (III)/UV, Fe (III)/ H2O2/UV and Fe (II) or Fe (III)/H2O2", Chemosphere, 39(15), 2693-2706. https://doi.org/10.1016/S0045-6535(99)00204-0.
  29. De Morais, J.L. and Zamora, P.P. (2005), "Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates", J. Hazard. Mater., 123(1-3), 181-186. https://doi.org/10.1016/j.jhazmat.2005.03.041.
  30. Deng, Y. (2007), "Physical and oxidative removal of organics during Fenton treatment of mature municipal landfill leachate", J. Hazard. Mater., 146(1-2), 334-340. https://doi.org/10.1016/j.jhazmat.2006.12.026.
  31. Deng, Y. (2009), "Advanced oxidation processes (AOPs) for reduction of organic pollutants in landfill leachate: A review", Int. J. Environ. Waste Manage., 4(3-4), 366-384. https://doi.org/10.1504/IJEWM.2009.027402.
  32. Deng, Y. and Englehardt, J.D. (2007), "Electrochemical oxidation for landfill leachate treatment", Waste Manage., 27(3), 380-388. https://doi.org/10.1016/j.wasman.2006.02.004.
  33. Deng, Y. and Zhao, R. (2015), "Advanced oxidation processes (AOPs) in wastewater treatment", Curr. Pollut. Reports, 1(3), 167-176. https://doi.org/10.1007/s40726-015-0015-z.
  34. Di Iaconi, C., Ramadori, R. and Lopez, A. (2006), "Combined biological and chemical degradation for treating a mature municipal landfill leachate", Biochem. Eng. J., 31(2), 118-124. https://doi.org/10.1016/j.bej.2006.06.002.
  35. Drtinova, B., Pospisil, M. and Cuba, V. (2010), "Products of radiation removal of lead from aqueous solutions", Appl. Radiat. Isotopes, 68(4-5), 672-675. https://doi.org/10.1016/j.apradiso.2009.11.076.
  36. ElShafei, G.M.S., Yehia, F.Z., Eshaq, G. and ElMetwally, A.E. (2017), "Enhanced degradation of nonylphenol at neutral pH by ultrasonic assisted-heterogeneous Fenton using nano zero valent metals", Sep. Purif. Technol, 178, 122-129. https://doi.org/10.1016/j.seppur.2017.01.028.
  37. Eren, Z. (2012), "Ultrasound as a basic and auxiliary process for dye remediation: A review", J. Environ. Manage., 104, 127-141. https://doi.org/10.1016/j.jenvman.2012.03.028.
  38. Faust, B.C. and Hoigne, J. (1990), "Photolysis of Fe (III)-hydroxy complexes as sources of OH radicals in clouds, fog and rain", Atmos. Environ. Part A. General Topics, 24(1), 79-89. https://doi.org/10.1016/0960-1686(90)90443-Q.
  39. Fernandes, L., Lucas, M.S., Maldonado, M.I., Oller, I. and Sampaio, A. (2014), "Treatment of pulp mill wastewater by Cryptococcus podzolicus and solar photo-Fenton: A case study", Chem. Eng. J., 245, 158-165. https://doi.org/10.1016/j.cej.2014.02.043.
  40. Gallard, H., de Laat, J. and Legube, B. (1998), "Effect of pH on the oxidation rate of organic compounds by Fe-II/H2O2. Mechanisms and simulation", New J. Chem., 22(3), 263-268. https://doi.org/10.1039/a708335a
  41. Gao, M., Zhang, D., Li, W., Chang, J., Lin, Q., Xu, D. and Ma, H. (2016), "Degradation of methylene blue in a heterogeneous Fenton reaction catalyzed by chitosan crosslinked ferrous complex", J. Taiwan Inst. Chem. Eng., 67, 355-361. http://doi.org/10.1016/j.jtice.2016.08.010.
  42. Garrido-Ramirez, E.G., Theng, B.K.G. and Mora, M.L. (2010), "Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions—a review", Appl. Clay Sci., 47(3-4), 182-192. https://doi.org/10.1016/j.clay.2009.11.044.
  43. Gau, S.H. and Chang, F.S. (1996), "Improved Fenton method to remove recalcitrant organics in landfill leachate", Water Sci. Technol., 34(7-8), 455-462. https://doi.org/10.1016/S0273-1223(97)81411-4.
  44. Ghaneian, M.T., Ehrampoush, M.H., Jasemizad, T., Kheirkha, M., Amraei, R. and Sahlabadi, F. (2013), "The effect of nitrate as a radical scavenger for the removal of humic acid from aqueous solutions by electron beam irradiation", J. Commun. Health Res., 1(3), 134-143. http://jhr.ssu.ac.ir/article-1-68-en.html.
  45. Gligorovski, S., Strekowski, R., Barbati, S. and Vione, D. (2015), "Environmental implications of hydroxyl radicals (• OH)", Chem. Rev., 115(24), 13051-13092. https://doi.org/10.1021/cr500310b.
  46. Gogate, P.R. (2008), "Treatment of wastewater streams containing phenolic compounds using hybrid techniques based on cavitation: A review of the current status and the way forward", Ultrason. Sonochem., 15(1), 1-15. https://doi.org/10.1016/j.ultsonch.2007.04.007.
  47. Gogate, P.R. and Pandit, A.B. (2004), "A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions", Adv. Environ. Res., 8(3-4), 501-551. https://doi.org/10.1016/S1093-0191(03)00032-7.
  48. Guo, J.S., Abbas, A.A., Chen, Y.P., Liu, Z.P., Fang, F. and Chen, P. (2010), "Treatment of landfill leachate using a combined stripping, Fenton, SBR, and coagulation process", J. Hazard. Mater., 178(1-3), 699-705.https://doi.org/10.1016/j.jhazmat.2010.01.144.
  49. Hamza, R.A., Iorhemen, O.T. and Tay, J.H. (2016), "Anaerobic-aerobic granular system for high-strength wastewater treatment in lagoons", Adv. Environ. Res, 5(3), 169-178. http://doi.org/10.12989/aer.2016.5.3.169.
  50. He, H. and Zhou, Z. (2017), "Electro-Fenton process for water and wastewater treatment", Crit. Rev. Env. Sci. Tec., 47(21), 2100-2131. https://doi.org/10.1016/j.jes.2015.12.003.
  51. He, J., Yang, X., Men, B. and Wang, D. (2016), "Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review", J. Environ. Sci., 39, 97-109. https://doi.org/10.1016/j.jes.2015.12.003.
  52. Hu, X., Wang, X., Ban, Y. and Ren, B. (2011), "A comparative study of UV-Fenton, UV-H2O2 and Fenton reaction treatment of landfill leachate", Environ. Technol., 32(9), 945-951. https://doi.org/10.1080/09593330.2010.521953.
  53. Huang, C.P. and Chu, C.S. (2012), "Indirect electrochemical oxidation of chlorophenols in dilute aqueous solutions", J. Environ. Eng., 138(3), 375-385. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000518.
  54. Huang, C.P., Dong, C. and Tang, Z. (1993), "Advanced chemical oxidation: Its present role and potential future in hazardous waste treatment", Waste Manage., 13(5-7), 361-377. https://doi.org/10.1016/0956-053X(93)90070-D.
  55. Husain Khan, A., Abdul Aziz, H., Khan, N.A., Ahmed, S., Mehtab, M.S., Vambol, S. and Islam, S. (2020), "Pharmaceuticals of emerging concern in hospital wastewater: removal of Ibuprofen and Ofloxacin drugs using MBBR method", Int. J. Environ. An. Ch., 1-15. https://doi.org/10.1080/03067319.2020.1855333.
  56. Hussain, M., Mahtab, M.S. and Farooqi, I.H. (2020), "The applications of ozone-based advanced oxidation processes for wastewater treatment: A review", Adv. Environ. Res., 9(3), 191-214. http://doi.org/10.12989/aer.2020.9.3.191.
  57. Huston, P.L. and Pignatello, J.J. (1999), "Degradation of selected pesticide active ingredients and commercial formulations in water by the photo-assisted Fenton reaction", Water Res., 33(5), 1238-1246. https://doi.org/10.1016/S0043-1354(98)00330-3.
  58. Ismail, S. and Tawfik, A. (2016), "Treatment of hazardous landfill leachate using Fenton process followed by a combined (UASB/DHS) system", Water Sci. Technol., 73(7), 1700-1708. https://doi.org/10.2166/wst.2015.655.
  59. Jaafarzadeh Haghighifard, N. A., Jorfi, S., Ahmadi, M., Mirali, S. and Kujlu, R. (2016), "Treatment of mature landfill leachate by chemical precipitation and Fenton advanced oxidation process", Environ. Health Eng. Manage. J. Winter, 3(1), 35-40.
  60. Jain, B., Singh, A.K., Kim, H., Lichtfouse, E. and Sharma, V.K. (2018), "Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes", Environ. Chem. Lett., 16(3), 947-967. https://doi.org/10.1007/s10311-018-0738-3.
  61. Jones, C.W. (1999), Applications of Hydrogen Peroxide and Derivatives, Royal Society of Chemistry, London, U.K.
  62. Kanaani, F., Tavakoli, B., Pendashteh, A.R., Chaibakhsh, N. and Ostovar, F. (2019), "Coagulation/Fenton oxidation combined treatment of compost leachate using quince seed mucilage as an effective biocoagulant", Environ. Technol., 1-10. https://doi.org/10.1080/09593330.2019.1635653.
  63. Kang, Y.W. and Hwang, K.Y. (2000), "Effects of reaction conditions on the oxidation efficiency in the Fenton process", Water Res., 34(10), 2786-2790. https://doi.org/10.1016/S0043-1354(99)00388-7.
  64. Kavitha, V. and Palanivelu, K. (2005), "Destruction of cresols by Fenton oxidation process", Water Res., 39(13), 3062-3072. https://doi.org/10.1016/j.watres.2005.05.011.
  65. Khan, A.H., Aziz, H.A., Khan, N.A., Hasan, M.A., Ahmed, S., Farooqi, I.H. and Mahtab, M.S. (2021a), "Impact, disease outbreak and the eco-hazards associated with pharmaceutical residues: A Critical review", Int. J. Environ. Sci. Technol., 1-12. https://doi.org/10.1007/s13762-021-03158-9.
  66. Khan, S.U., Mahtab, M.S. and Farooqi, I.H. (2021b), "Enhanced lead (II) removal with low energy consumption in an electrocoagulation column employing concentric electrodes: Process optimisation by RSM using CCD", Int. J. Environ. An. Ch., 1-18. https://doi.org/10.1080/03067319.2021.1873304.
  67. Kim, J.S., Kim, H.Y., Won, C.H. and Kim, J.G. (2001), "Treatment of leachate produced in stabilized landfills by coagulation and Fenton oxidation process", J. Chin. Inst. Chem. Eng., 32(5), 425-429.
  68. Kim, S.M. and Vogelpohl, A. (1998), "Degradation of organic pollutants by the photo‐Fenton‐process", Chem. Eng. Technol. Industr. Chem. Plant Equip. Process Eng. Biotechnol., 21(2),187-191. https://doi.org/10.1002/(SICI)1521-4125(199802)21:2%3C187::AID-CEAT187%3E3.0.CO;2-H.
  69. Kim, S.M., Geissen, S.U. and Vogelpohl, A. (1997), "Landfill leachate treatment by a photoassisted Fenton reaction", Water Sci. Technol., 35(4), 239-248.https://doi.org/10.1016/S0273-1223(97)00031-0.
  70. Kim, Y.K. and Huh, I.R. (1997), "Enhancing biological treatability of landfill leachate by chemical oxidation", Environ. Eng. Sci., 14(1), 73-79. https://doi.org/10.1089/ees.1997.14.73.
  71. Kjeldsen, P., Barlaz, M.A., Rooker, A.P., Baun, A., Ledin, A. and Christensen, T.H. (2002), "Present and long-term composition of MSW landfill leachate: A review", Crit. Rev. Env. Sci. Tec, 32(4), 297-336. https://doi.org/10.1080/10643380290813462.
  72. Kochany, J. and Lipczynska-Kochany, E. (2009), "Utilization of landfill leachate parameters for pretreatment by Fenton reaction and struvite precipitation—a comparative study", J. Hazard. Mater., 166(1), 248-254. https://doi.org/10.1016/j.jhazmat.2008.11.017.
  73. Kuo, W.S. and Wu, L.N. (2010), "Fenton degradation of 4-chlorophenol contaminated water promoted by solar irradiation", Sol. Energy, 84(1), 59-65. https://doi.org/10.1016/j.solener.2009.10.006.
  74. Lau, I.W., Wang, P. and Fang, H.H. (2001), "Organic removal of anaerobically treated leachate by Fenton coagulation", J. Environ. Eng., 127(7), 666-669. https://doi.org/10.1061/(ASCE)0733-9372(2001)127:7(666).
  75. Lau, I.W., Wang, P., Chiu, S.S. and Fang, H.H. (2002), "Photoassisted Fenton oxidation of refractory organics in UASB-pretreated leachate", J. Environ. Sci., 14(3), 388-392. https://doi.org/10.3321/j.issn:1001-0742.2002.03.016
  76. Legrini, O., Oliveros, E. and Braun, A.M. (1993), "Photochemical processes for water treatment", Chem. Rev., 93(2), 671-698. https://doi.org/10.1021/cr00018a003.
  77. Leifeld, V., Dos Santos, T.P.M., Zelinski, D.W. and Igarashi-Mafra, L. (2018), "Ferrous ions reused as catalysts in Fenton-like reactions for remediation of agro-food industrial wastewater", J. Environ. Manage., 222, 284-292. https://doi.org/10.1016/j.jenvman.2018.05.087.
  78. Li, J., Mailhot, G., Wu, F. and Deng, N. (2010a), "Photochemical efficiency of Fe (III)-EDDS complex: OH radical production and 17β-estradiol degradation", J. Photoch. Photobio. A., 212(1), 1-7. https://doi.org/10.1016/j.jphotochem.2010.03.001.
  79. Li, W., Zhou, Q. and Hua, T. (2010), "Removal of organic matter from landfill leachate by advanced oxidation processes: A review", Int. J. Chem. Eng. https://doi.org/10.1155/2010/270532.
  80. Li, Y., Bachas, L.G. and Bhattacharyya, D. (2007), "Selected chloro-organic detoxifications by polychelate (poly (acrylic acid)) and citrate-based Fenton reaction at neutral pH environment", Ind. Eng. Chem. Res., 46(24), 7984-7992. https://doi.org/10.1021/ie070393b.
  81. Li, Y.C., Bachas, L.G. and Bhattacharyya, D. (2005), "Kinetics studies of trichlorophenol destruction by chelate-based Fenton reaction", Environ. Eng. Sci., 22(6), 756-771. https://doi.org/10.1089/ees.2005.22.756.
  82. Lin, S.H. and Chang, C.C. (2000), "Treatment of landfill leachate by combined electro-Fenton oxidation and sequencing batch reactor method", Water Res., 34(17), 4243-4249. https://doi.org/10.1016/S0043-1354(00)00185-8.
  83. Lin, S.H. and Lo, C.C. (1997), "Fenton process for treatment of desizing wastewater", Water Res, 31(8), 2050-2056. https://doi.org/10.1016/S0043-1354(97)00024-9.
  84. Lipczynska-Kochany, E. and Kochany, J. (2008), "Effect of humic substances on the Fenton treatment of wastewater at acidic and neutral pH", Chemosphere, 73(5), 745-750. https://doi.org/10.1016/j.chemosphere.2008.06.028.
  85. Liu, J., Wu, J.Y., Kang, C.L., Peng, F., Liu, H.F., Yang, T. and Wang, H.L. (2013), "Photo-Fenton effect of 4-chlorophenol in ice", J. Hazard. Mater., 261, 500-511. https://doi.org/10.1016/j.jhazmat.2013.07.040.
  86. Lopez, A., Pagano, M., Volpe, A. and Di Pinto, A.C. (2004), "Fenton's pre-treatment of mature landfill leachate", Chemosphere, 54(7), 1005-1010. https://doi.org/10.1016/j.chemosphere.2003.09.015.
  87. Lucking, F., Koser, H., Jank, M. and Ritter, A. (1998), "Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorophenol with hydrogen peroxide in aqueous solution", Water Res., 32(9), 2607-2614. https://doi.org/10.1016/S0043-1354(98)00016-5.
  88. Mahtab, M.S., Islam, D.T. and Farooqi, I.H. (2020), "Optimization of the process variables for landfill leachate treatment using Fenton based advanced oxidation technique", Eng. Sci. Technol., 24(2), 428-435. https://doi.org/10.1016/j.jestch.2020.08.013.
  89. Mahtab, M.S. and Farooqi, I.H. (2020), "UV-TiO2 process for landfill leachate treatment: Optimization by response surface methodology". Int. J. Res. Eng. Appl. Manage., 5(12), 14-18. https://doi.org/10.35291/2454-9150.2020.0160.
  90. Mahtab, M.S., Farooqi, I.H. and Khursheed, A. (2021), "Zero Fenton sludge discharge: A review on reuse approach during wastewater treatment by the advanced oxidation process", Int. J. Environ. Sci. Technol., 1-14. https://doi.org/10.1007/s13762-020-03121-0.
  91. Malato, S., Fernandez-Ibanez, P., Maldonado, M.I., Oller, I., Polo-Lopez, M.I. and Pichat, P. (2013), Solar Photocatalytic Pilot Plants: Commercially Available Reactors, in Photocatalysis and Water Purification: From Fundamentals to Recent Applications, John Wiley and Sons, Inc., U.S.A.
  92. Manenti, D.R., Soares, P.A., Silva, T.F., Modenes, A.N., Espinoza-Quinones, F.R., Bergamasco, R. and Vilar, V.J. (2015), "Performance evaluation of different solar advanced oxidation processes applied to the treatment of a real textile dyeing wastewater", Environ. Sci. Pollut. Res., 22(2), 833-845. https://doi.org/10.1007/s11356-014-2767-1.
  93. Manu, B. and Mahamood, S. (2011), "Enhanced degradation of paracetamol by UV-C supported photo-Fenton process over Fenton oxidation", Water Sci. Technol., 64(12), 2433-2438. https://doi.org/10.2166/wst.2011.804.
  94. Martins, R.C., Lopes, D.V., Quina, M.J. and Quinta-Ferreira, R.M. (2012), "Treatment improvement of urban landfill leachates by Fenton-like process using ZVI", Chem. Eng. J., 192, 219-225. https://doi.org/10.1016/j.cej.2012.03.053.
  95. Mohajeri, S., Aziz, H.A., Isa, M.H., Bashir, M.J., Mohajeri, L. and Adlan, M.N. (2010), "Influence of Fenton reagent oxidation on mineralization and decolorization of municipal landfill leachate", J. Environ. Sci. Heal. A, 45(6), 692-698. https://doi.org/10.1080/10934521003648883.
  96. Mohajeri, S., Aziz, H.A., Zahed, M.A., Mohajeri, L., Bashir, M.J., Aziz, S.Q. and Isa, M.H. (2011), "Multiple responses analysis and modeling of Fenton process for treatment of high strength landfill leachate", Water Sci. Technol., 64(8), 1652-1660. https://doi.org/10.2166/wst.2011.489.
  97. Monteil, H., Pechaud, Y., Oturan, N. and Oturan, M.A. (2019), "A review on efficiency and cost effectiveness of electro-and bio-electro-Fenton processes: Application to the treatment of pharmaceutical pollutants in water", Chem. Eng. J., 376, 119577. https://doi.org/10.1016/j.cej.2018.07.179.
  98. Moradi, M. and Ghanbari, F. (2014), "Application of response surface method for coagulation process in leachate treatment as pretreatment for Fenton process: Biodegradability improvement", J. Water Process Eng., 4, 67-73. https://doi.org/10.1016/j.jwpe.2014.09.002.
  99. Muangthai, I., Ratanatamsakul, C. and Lu, M.C. (2010), "Removal of 2, 4-dichlorophenol by fluidized-bed Fenton process", Sust. Environ. Res., 20(5), 325.
  100. Neyens, E. and Baeyens, J. (2003), "A review of classic Fenton's peroxidation as an advanced oxidation technique", J. Hazard. Mater., 98(1-3), 33-50. https://doi.org/10.1016/S0304-3894(02)00282-0.
  101. Niveditha, S.V. and Gandhimathi, R. (2020), "Mineralization of stabilized landfill leachate by heterogeneous Fenton process with RSM optimization", Sep. Sci. Technol., 1-10. https://doi.org/10.1080/01496395.2020.1725573.
  102. Pala, A. and Erden, G. (2004), "Chemical pretreatment of landfill leachate discharged into municipal biological treatment systems", Environ. Eng. Sci., 21(5), 549-557. https://doi.org/10.1089/ees.2004.21.549.
  103. Perez, J.A.S., Sanchez, I.M.R., Carra, I., Reina, A.C., Lopez, J.L.C. and Malato, S. (2013), "Economic evaluation of a combined photo-Fenton/MBR process using pesticides as model pollutant. Factors affecting costs", J. Hazard. Mater., 244, 195-203. https://doi.org/10.1016/j.jhazmat.2012.11.015.
  104. Petrovic, M., Radjenovic, J. and Barcelo, D. (2011), "Advanced oxidation processes (AOPs) applied for wastewater and drinking water treatment. Elimination of pharmaceuticals", Holistic Approach Environ., 1(2), 63-74.
  105. Pieczykolan, B., Plonka, I., Barbusinski, K. and Amalio-Kosel, M. (2013), "Comparison of landfill leachate treatment efficiency using the advanced oxidation processes", Archives Environ. Protection, 39(2), 107-115. https://doi.org/10.2478/aep-2013-0016.
  106. Pignatello, J.J. (1992), "Dark and photoassisted iron (3+)-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide", Environ. Sci. Technol., 26(5), 944-951. https://doi.org/10.1021/es00029a012.
  107. Pignatello, J.J., Oliveros, E. and MacKay, A. (2006), "Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry", Crit. Rev. Env. Sci. Technol., 36(1), 1-84. https://doi.org/10.1080/10643380500326564.
  108. Pliego, G., Xekoukoulotakis, N., Venieri, D., Zazo, J.A., Casas, J.A., Rodriguez, J.J. and Mantzavinos, D. (2014), "Complete degradation of the persistent anti‐depressant sertraline in aqueous solution by solar photo‐Fenton oxidation". J. Chem. Technol. Biotechnol., 89(6), 814-818. https://doi.org/10.1002/jctb.4314.
  109. Pliego, G., Zazo, J.A., Garcia-Munoz, P., Munoz, M., Casas, J.A. and Rodriguez, J.J. (2015), "Trends in the intensification of the Fenton process for wastewater treatment: An overview", Critical Rev. Environ. Sci. Technol., 45(24), 2611-2692.https://doi.org/10.1080/10643389.2015.1025646.
  110. Poblete, R. and Perez, N. (2020), "Use of sawdust as pretreatment of photo-Fenton process in the depuration of landfill leachate", J. Environ. Manage., 253, 109697. https://doi.org/10.1016/j.jenvman.2019.109697.
  111. Pouran, S.R., Aziz, A.A. and Daud, W.M.A.W. (2015), "Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters", J. Industr. Eng. Chem., 21, 53-69. https://doi.org/10.1016/j.jiec.2014.05.005.
  112. Pouran, S.R., Raman, A.A.A. and Daud, W.M.A.W. (2014), "Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions", J. Clean. Prod., 64, 24-35. https://doi.org/10.1016/j.jclepro.2013.09.013.
  113. Praveen, V. and Sunil, B.M. (2016), "Potential use of waste rubber shreds in drainage layer of landfills-An experimental study", Adv. Environ. Res., 5(3), 201-211. http://doi.org/10.12989/aer.2016.5.3.201.
  114. Primo, O., Rueda, A., Rivero, M.J. and Ortiz, I. (2008), "An integrated process, Fenton reaction-ultrafiltration, for the treatment of landfill leachate: Pilot plant operation and analysis", Industr. Eng. Chem. Res., 47(3), 946-952. https://doi.org/10.1021/ie071111a.
  115. Radjenovic, J. and Sedlak, D.L. (2015), "Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water", Environ. Sci. Technol., 49(19), 11292-11302. https://doi.org/10.1021/acs.est.5b02414.
  116. Raji, J.R. and Palanivelu, K. (2016), "Semiconductor coupled solar photo-Fenton's treatment of dyes and textile effluent", Adv. Environ. Res., 5(1), 61-77. http://doi.org/10.12989/aer.2016.5.1.061.
  117. Rathnayake, W.A.P.P. and Herath, G.B.B. (2018), "A review of leachate treatment techniques", Proceedings of the 9th International Conference on Sustainable Built Environment, Sri Lanka, December.
  118. Renou, S., Givaudan, J.G., Poulain, S., Dirassouyan, F. and Moulin, P. (2008), "Landfill leachate treatment: Review and opportunity", J. Hazard. Mater., 150(3), 468-493. https://doi.org/10.1016/j.jhazmat.2007.09.077.
  119. Rothschild, W.G. and Allen, A.O. (1958), "Studies in the radiolysis of ferrous sulfate solutions: III. Air-free solutions at higher pH", Radiat. Res., 8(2), 101-110. https://doi.org/10.2307/3570600.
  120. Rush, J.D. and Bielski, B.H. (1985), "Pulse radiolytic studies of the reaction of perhydroxyl/superoxide O2-with iron (II)/iron (III) ions. The reactivity of HO2/O2-with ferric ions and its implication on the occurrence of the Haber-Weiss reaction", J. Phys. Chem., 89(23), 5062-5066. https://doi.org/10.1021/j100269a035.
  121. Safarzadeh-Amiri, A., Bolton, J.R. and Cater, S.R. (1997), "Ferrioxalate-mediated photodegradation of organic pollutants in contaminated water", Water Res., 31(4), 787-798. https://doi.org/10.1016/S0043-1354(96)00373-9.
  122. Salimi, M., Esrafili, A., Gholami, M., Jafari, A.J., Kalantary, R.R., Farzadkia, M. and Sobhi, H.R. (2017), "Contaminants of emerging concern: A review of new approach in AOP technologies", Environ. Monit. Assess., 189(8), 414. https://doi.org/10.1007/s10661-017-6097-x.
  123. Sarmento, A.P., Borges, A.C., de Matos, A.T. and Romualdo, L.L. (2018), "Humic acid degradation by fenton-like process using Fe2+ and Mn4+", Water Pract. Technol., 13(2), 388-399. https://doi.org/10.2166/wpt.2018.048.
  124. Schwarzbauer, J., Heim, S., Brinker, S. and Littke, R. (2002), "Occurrence and alteration of organic contaminants in seepage and leakage water from a waste deposit landfill", Water Res., 36(9), 2275-2287. https://doi.org/10.1016/S0043-1354(01)00452-3.
  125. Serra, A., Domenech, X., Brillas, E. and Peral, J. (2011), "Life cycle assessment of solar photo-Fenton and solar photoelectro-Fenton processes used for the degradation of aqueous α-methylphenylglycine", J. Environ. Monitor., 13(1), 167-174. https://doi.org/10.1039/C0EM00552E.
  126. Sharma, A., Verma, M. and Haritash, A.K. (2016). "Degradation of toxic azo dye (AO7) using Fenton's process", Adv. Environ. Res., 5(3), 189-200. http://doi.org/10.12989/aer.2016.5.3.189.
  127. Sharma, S., Ruparelia, J.P. and Patel, M.L. (2011), "A general review on advanced oxidation processes for waste water treatment", Inst. Technol. Nirma Univ. Ahmedabad, 481, 08-10.
  128. Sruthi, T., Gandhimathi, R., Ramesh, S.T. and Nidheesh, P.V. (2018), "Stabilized landfill leachate treatment using heterogeneous Fenton and electro-Fenton processes", Chemosphere, 210, 38-43. https://doi.org/10.1016/j.chemosphere.2018.06.172.
  129. Stuglik, Z. and PawelZagorski, Z. (1981), "Pulse radiolysis of neutral iron (II) solutions: oxidation of ferrous ions by OH radicals", Radiat. Phys. Chem., 17(4), 229-233. https://doi.org/10.1016/0146-5724(81)90336-8.
  130. Sun, Y. and Pignatello, J.J. (1992), "Chemical treatment of pesticide wastes. Evaluation of iron (III) chelates for catalytic hydrogen peroxide oxidation of 2, 4-D at circumneutral pH", J. Agr. Food Chem., 40(2), 322-327. https://doi.org/10.1021/jf00014a031.
  131. Suresh, A., Minimol Pieus, T. and Soloman, P.A. (2016), "Treatment of Landfill Leachate by membrane bioreactor and electro-fenton process", Int. J. Eng. Sci. Res. Technol., 5(8), 689-697.
  132. Szpyrkowicz, L., Juzzolino, C. and Kaul, S.N. (2001), "A comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and Fenton reagent", Water Res., 35(9), 2129-2136. https://doi.org/10.1016/S0043-1354(00)00487-5.
  133. Ting, W.P., Lu, M.C. and Huang, Y.H. (2008), "The reactor design and comparison of Fenton, electroFenton and photoelectro-Fenton processes for mineralization of benzene sulfonic acid (BSA)", J. Hazard. Mater., 156(1-3), 421-427. https://doi.org/10.1016/j.jhazmat.2007.12.031.
  134. Tirado, L., Gokkus, O., Brillas, E. and Sires, I. (2018), "Treatment of cheese whey wastewater by combined electrochemical processes.", J. Appl. Electrochem., 48(12), 1307-1319. https://doi.org/10.1007/s10800-018-1218-y.
  135. Varank, G., Guvenc, S.Y., Dincer, K. and Demir, A. (2020), "Concentrated leachate treatment by Electro-Fenton and Electro-Persulfate processes using central composite design", Int. J. Environ. Res., 1-23. https://doi.org/10.1007/s41742-020-00269-y.
  136. Verma, M. and Haritash, A.K. (2020), "Review of advanced oxidation processes (AOPs) for treatment of pharmaceutical wastewater", Adv. Environ. Res., 9(1), 1-17. https://doi.org/10.12989/aer.2020.9.1.001.
  137. Vilar, V.J., Moreira, J.M., Fonseca, A., Saraiva, I. and Boaventura, R.A. (2012), "Application of Fenton and solar photo-Fenton processes to the treatment of a sanitary landfill leachate in a pilot plant with CPCs", J. Adv. Oxid. Technol., 15(1), 107-116. https://doi.org/10.1515/jaots-2012-0112.
  138. Villegas-Guzman, P., Giannakis, S., Rtimi, S., Grandjean, D., Bensimon, M., De Alencastro, L.F. and Pulgarin, C. (2017a), "A green solar photo-Fenton process for the elimination of bacteria and micropollutants in municipal wastewater treatment using mineral iron and natural organic acids", Appl. Catal. B-Environ., 219, 538-549. https://doi.org/10.1016/j.apcatb.2017.07.066.
  139. Villegas-Guzman, P., Giannakis, S., Torres-Palma, R.A. and Pulgarin, C. (2017b), "Remarkable enhancement of bacterial inactivation in wastewater through promotion of solar photo-Fenton at nearneutral pH by natural organic acids", Appl. Catal. B Environ., 205, 219-227. https://doi.org/10.1016/j.apcatb.2016.12.021.
  140. Wang, N., Zheng, T., Zhang, G. and Wang, P. (2016), "A review on Fenton-like processes for organic wastewater treatment", J. Environ. Chem. Eng., 4(1), 762-787. https://doi.org/10.1016/j.jece.2015.12.016.
  141. Wang, P., Lau, I.W., Fang, H.H. and Zhou, D. (2000), "Landfill leachate treatment with combined UASB and Fenton coagulation", J. Environ. Sci. Heal. A, 35(10), 1981-1988. https://doi.org/10.1080/10934520009377093.
  142. Wang, P., Zeng, G., Peng, Y., Liu, F., Zhang, C., Huang, B. and Lai, M. (2014), "2, 4, 6-Trichlorophenolpromoted catalytic wet oxidation of humic substances and stabilized landfill leachate", Chem. Eng. J., 247, 216-222. https://doi.org/10.1016/j.cej.2014.03.014.
  143. Welander, U. and Henrysson, T. (1998), "Physical and chemical treatment of a nitrified leachate from a municipal landfill", Environ. Technol., 19(6),591-599. https://doi.org/10.1080/09593331908616715.
  144. Wiszniowski, J., Robert, D., Surmacz-Gorska, J., Miksch, K., Malato, S. and Weber, J.V. (2004), "Solar photocatalytic degradation of humic acids as a model of organic compounds of landfill leachate in pilot-plant experiments: Influence of inorganic salts", Appl. Catal. B Environ., 53(2), 127-137. https://doi.org/10.1016/j.apcatb.2004.04.017.
  145. Wu, C., Liu, X., Wei, D., Fan, J. and Wang, L. (2001), "Photosonochemical degradation of phenol in water", Water Res., 35(16), 3927-3933. https://doi.org/10.1016/S0043-1354(01)00133-6.
  146. Wu, Y., Zhou, S., Ye, X., Zhao, R., and Chen, D. (2011), "Oxidation and coagulation removal of humic acid using Fenton process", Colloid. Surfaces A Physicochem. Eng. Aspects, 379(1-3), 151-156. https://doi.org/10.1016/j.colsurfa.2010.11.057.
  147. Xu, J., Long, Y., Shen, D., Feng, H. and Chen, T. (2017), "Optimization of Fenton treatment process for degradation of refractory organics in pre-coagulated leachate membrane concentrates", J. Hazard. Mater., 323, 674-680. https://doi.org/10.1016/j.jhazmat.2016.10.031.
  148. Xu, X.R., Li, X.Y., Li, X.Z. and Li, H.B. (2009), "Degradation of melatonin by UV, UV/H2O2, Fe2+/H2O2 and UV/Fe2+/H2O2 processes", Sep. Purif. Technol., 68(2), 261-266. https://doi.org/10.1016/j.seppur.2009.05.013.
  149. Yang, Y., Jiang, J., Lu, X., Ma, J. and Liu, Y. (2015), "Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: A novel advanced oxidation process", Environ. Sci. Technol., 49(12), 7330-7339. https://doi.org/10.1021/es506362e.
  150. Yilmaz, T., Aygun, A., Berktay, A. and Nas, B. (2010), "Removal of COD and colour from young municipal landfill leachate by Fenton process", Environ. Technol., 31(14), 1635-1640. https://doi.org/10.1080/09593330.2010.494692.
  151. Yu, F., Zhou, M. and Yu, X. (2015), "Cost-effective electro-Fenton using modified graphite felt that dramatically enhanced on H2O2 electro-generation without external aeration", Electrochim. Acta, 163, 182-189. https://doi.org/10.1016/j.electacta.2015.02.166.
  152. Zazo, J.A., Casas, J.A., Mohedano, A.F., Gilarranz, M.A. and Rodriguez, J.J. (2005), "Chemical pathway and kinetics of phenol oxidation by Fenton's reagent", Environ. Sci. Technol., 39(23), 9295-9302. https://doi.org/10.1021/es050452h.
  153. Zazouli, M.A., Yousefi, Z., Eslami, A. and Ardebilian, M.B. (2012), "Municipal solid waste landfill leachate treatment by fenton, photo-Fenton and Fenton-like processes: Effect of some variables", Iran. J. Environ. Heal. Sci. Eng., 9(1), 3. https://doi.org/10.1186/1735-2746-9-3.
  154. Zepp, R.G., Faust, B.C. and Hoigne, J. (1992), "Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron (II) with hydrogen peroxide: The photo-Fenton reaction", Environ. Sci. Technol., 26(2), 313-319. https://doi.org/10.1021/es00026a011.
  155. Zha, F.G., Yao, D.X., Hu, Y.B., Gao, L.M. and Wang, X.M. (2016), "Integration of US/Fe2+ and photoFenton in sequencing for degradation of landfill leachate", Water Sci. Technol., 73(2), 260-266. https://doi.org/10.2166/wst.2015.487.
  156. Zhang, H., Zhang, D. and Zhou, J. (2006), "Removal of COD from landfill leachate by electro-Fenton method", J. Hazard. Mater., 135(1-3), 106-111. https://doi.org/10.1016/j.jhazmat.2005.11.025.
  157. Zhang, M.H., Dong, H., Zhao, L., Wang, D.X. and Meng, D. (2019), "A review on Fenton process for organic wastewater treatment based on optimization perspective", Sci. Total Environ., 670, 110-121. https://doi.org/10.1016/j.scitotenv.2019.03.180.