DOI QR코드

DOI QR Code

A Management Plan of Wastewater Sludge to Reduce the Exposure of Microplastics to the Ecosystem

미세플라스틱의 환경노출을 최소화하기 위한 하·폐수 슬러지 관리방안

  • 안준영 (한국환경정책.평가연구원) ;
  • 이병권 (한국환경정책.평가연구원) ;
  • 전병훈 (한양대학교 자원환경공학과) ;
  • 지민규 (한국환경정책.평가연구원)
  • Received : 2021.01.19
  • Accepted : 2021.02.10
  • Published : 2021.03.31

Abstract

Due to the negative impacts of microplastics (MPs) on the ecosystem, the investigation of its occurrence and its treatment from sewage and wastewater treatment plants (WWTPs) have received a lot of attention in the recent years. Most MPs are precipitated and removed with the sludge during the treatment process. Proper sludge management is immensely necessary to avoid MP exposure in the environment. However, the domestic research on this aspect is limited. This study reviews appropriate sludge management approaches to decrease environmental MP exposure. This can be achieved through investigating sludge generation and treatment, regulation laws and government policy trends with an emphasis on WWTPs. The ratio of sludge in sewage treatment plants has been observed to be highest in recycling followed by incineration and landfills. Recycling is the highest in fuel followed by construction materials and composting. For WWTPs, the highest ratio is in recycling followed by fuel and landfills, and recycling is confirmed in the following order: incineration > after composting > after solidification > earthworm breeding. Treatment approaches that can increase the exposure of MPs to the ecosystem are considered to be used in landfills and agricultural fields. However, this method is not appropriate given the insufficient capacity of domestic landfills and the sufficient supply of existing chemical and animal manure fertilizers. Instead, it would be rational in terms of environmental preservation to expand the use of fuel and energy in connection with the new and renewable energy policy, and to actively seek the use of sub-materials for construction materials. In order to secure the basic data for the effectiveness of future planning and revision of related laws, it is required to perform an in-depth investigation of the sludge supply and demand status along with the environmental and economic effects.

미세플라스틱으로 인한 생태환경에 미치는 부정적인 영향들이 보고되면서 이의 발생현황 및 처리효율에 대한 연구가 하·폐수처리장을 중심으로 수행되어 왔다. 처리공정 내의 미세플라스틱은 대부분 슬러지에 침전되어 제거되므로 적절한 관리가 필요하나 이와 관련한 국내 연구는 제한적이다. 본 연구에서는 공공하수처리장 및 공공폐수처리장을 대상으로 슬러지의 발생 및 처리현황과 관련 법률 조사 및 정책 동향 파악을 통해 미세플라스틱의 환경노출을 최소화할 수 있는 적절한 관리방안을 검토하였다. 슬러지 처리방법의 조사·분석 결과, 공공하수처리장 슬러지는 재활용 > 소각 > 매립 등 순으로 비율이 높게 나타났으며 이중 재활용은 연료화 > 건축소재 > 퇴비화 순으로 확인되었다. 공공폐수처리장의 경우는 재활용 > 연료화 > 매립 순으로 비율이 높게 나타났으며, 재활용은 소각 후 > 퇴비화 후 > 고형화 후 > 지렁이 사육 순으로 확인되었다. 미세플라스틱의 생태계 노출을 가중 시킬 수 있는 슬러지 처리방법은 매립 및 농업분야의 이용 용도로 판단되며, 해당 방법은 국내 매립장의 수용 용량 부족 현상과 화학비료 및 가축분뇨 비료 등의 충분한 공급 현황을 고려할 때 그 필요성이 낮아 보인다. 대신 신재생에너지 정책과 연계하여 연료화, 에너지화 이용 방안을 확대하고 이외 건축자재 부원료 등의 활용을 적극적으로 모색하는 것이 지속가능한 환경보전 측면에서 보다 합리적일 것으로 예상된다. 향후 동 계획의 실효성과 관련 법 개정을 위한 주요 기초 자료를 확보하기 위해서는 국내 슬러지 수요-공급 현황과 관리 계획의 환경적 영향 및 경제적 효과 등을 심도 있게 연구하는 과정이 필요할 것으로 판단된다.

Keywords

References

  1. Plastics Europe, "Plastics - the facts 2017. An Analysis of European Plastics Production, Demand and Waste Data," https://www.plasticseurope.org/en/resources/market-data (2018).
  2. Geyer, R., Jambeck, J. R., and Law, K. L., "Production, Use, and Fate of All Plastics Ever Made," Sci. Adv., 3(7), e1700782 (2017). https://doi.org/10.1126/sciadv.1700782
  3. Eerkes-Medrano, D., Thompson, R. C., and Aldridge, D. C., "Microplastics in Freshwater Systems: A Review of the Emerging Threats, Identification of Knowledge Gaps and Prioritisation of Research Needs," Water Res., 75, 63-82 (2015). https://doi.org/10.1016/j.watres.2015.02.012
  4. Li, J., Liu, H., and Chen, J. P., "Microplastics in Freshwater Systems: A Review on Occurrence, Environmental Effects, and Methods for Microplastics Detection," Water Res., 137, 362-374 (2018). https://doi.org/10.1016/j.watres.2017.12.056
  5. Allen, S., Allen, D., Phoenix, V. R., Roux, G. L., Jimenez, P. D., Simonneau, A., Binet, S., and Galop, D., "Atmospheric Transport and Deposition of Microplastics in a Remote Mountain Catchment," Nat. Geosci., 12, 339-344 (2019). https://doi.org/10.1038/s41561-019-0335-5
  6. Li, C., Busquets, R., and Campos, L. C., "Assessment of Microplastics in Freshwater Systems: A Review," Sci. Total Environ., 707, 135578 (2020). https://doi.org/10.1016/j.scitotenv.2019.135578
  7. Lourenco, P. M., Serra-Goncalves, C., Ferreira, J. L., Catry, T., and Granadeiro, J. P., "Plastic and Other Microfibers in Sediments, Macroinvertebrates and Shorebirds from Three Intertidal Wetlands of Southern Europe and West Africa," Environ. Pollut., 231(1), 123-133 (2017). https://doi.org/10.1016/j.envpol.2017.07.103
  8. Li, X., Mei, Q., Chen, L., Zhang, H., Dong, B., Dai, X., He, C., and Zhou, J., "Enhancement in Adsorption Potential of Microplastics in Sewage Sludge for Metal Pollutants After the Wastewater Treatment Process," Water Res., 157, 228-237 (2019). https://doi.org/10.1016/j.watres.2019.03.069
  9. He, P., Chen, L., Shao, L., Zhang, H., and Lu, F., "Municipal Solid Waste (MSW) Landfill: A Source of Microplastics? - Evidence of Microplastics in Landfill Leachate," Water Res., 159, 38-45 (2019). https://doi.org/10.1016/j.watres.2019.04.060
  10. de Sa, L. C., Oliveira, M., Ribeiro, F., Rocha, T. L., and Futter, M. N., "Studies of the Effects of Microplastics on Aquatic Organisms: What do We Know and Where Should We Focus Our Efforts in the Future," Sci. Total Environ., 645, 1029-1039 (2018). https://doi.org/10.1016/j.scitotenv.2018.07.207
  11. Jeong, C. B., Kang, H. M, Lee, M. C., Kim, D. H., Han, J., Hwang, D. S., Souissi, S., Lee, S. J., Shin, K. H., Park, H. G., and Lee, J. S., "Adverse Effects of Microplastics and Oxidative Stress-induced MAPK/Nrf2 Pathway-Mediated Defense Mechanisms in the Marine Copepod," Sci. Rep., 7, 41323 (2017). https://doi.org/10.1038/srep41323
  12. Lehner, R., Weder, C., Petri-Fink, A., and Rothen-Rutishauser, B., "Emergence of Nanoplastic in the Environment and Possible Impact on Human Health," Environ. Sci. Technol., 53(4), 1748-1765 (2019). https://doi.org/10.1021/acs.est.8b05512
  13. Sun, J., Dai, X., Wang, Q., van Loosdrecht, M. C. M., and Ni, B.-J., "Microplastics in Wastewater Treatment Plants: Detection, Occurrence and Removal," Water Res., 152, 21-37 (2019). https://doi.org/10.1016/j.watres.2018.12.050
  14. Talvitie, J., Mikola, A., Koistinen, A., and Setala, O., "Solutions to Microplastic Pollution- Removal of Microplastics from Wastewater Effluent with Advanced Wastewater Treatment Technologies," Water Res., 123, 401-407 (2017). https://doi.org/10.1016/j.watres.2017.07.005
  15. Gatidou, G., Arvaniti, O. S., and Stasinakis, A. S., "Review on the Occurrence and Fate of Microplastics in Sewage Treatment Plants," J. Hazard. Mater., 367, 504-512 (2019). https://doi.org/10.1016/j.jhazmat.2018.12.081
  16. Rolsky, C., Kelkar, V., Driver, E., and Halden, R. U., "Municipal Sewage Sludge as a Source of Microplastics in the Environment," Curr. Opin. Environ. Sci. Health, 14, 16-22 (2020). https://doi.org/10.1016/j.coesh.2019.12.001
  17. Edo, C., Gonzalez-Pleiter, M., Leganes, F., Fernandez-Pinas, F., and Rosal, R., "Fate of Microplastics in Wastewater Treatment Plants and Their Environmental Dispersion with Effluent and Sludge," Environ. Pollut., 259, 113837 (2020). https://doi.org/10.1016/j.envpol.2019.113837
  18. Hernandez-Arenas, R., Beltran-Sanahuja, A., Navarro-Quirant, P., and Sanz-Lazaro, C., "The Effect of Sewage Sludge Containing Microplastics on Growth and Fruit Development of Tomato Plants," Environ. Pollut., 268, 115779 (2021). https://doi.org/10.1016/j.envpol.2020.115779
  19. Zhang, J., Zuo, W., Tian, Y., Chen, L., Yin, L., and Zhang, J., "Sulfur Transformation During Microwave and Conventional Pyrolysis of Sewage Sludge," Environ. Sci. Technol., 51(1), 709-717 (2016).
  20. "2018 Statistics of Sewerage," Ministry of Environment, http://me.go.kr/home/web/policy_data/read.do?pagerOffset=20&maxPageItems=10&maxIndexPages=10&searchKey=&searchValue=&menuId=10264&orgCd=&condition.code=A5&condition.deleteYn=N&seq=7440 (2019).
  21. "2017 Status of Public Wastewater Treatment Facilities," Ministry of Environment, https://www.me.go.kr/home/web/policy_data/read.do?pagerOffset=0&maxPageItems=10&maxIndexPages=10&searchKey=&searchValue=&menuId=10259&orgCd=&condition.deleteYn=N&seq=7433 (2018).
  22. "2018 Status of Waste Generation and Treat," Ministry of Environment, https://www.recyclinginfo.or.kr/rrs/stat/envStatDetail.do?menuNo=M13020201&pageIndex=1&bbsId=BBSMSTR_000000000002&s_nttSj=KEC005&nttId=1010&searchBgnDe=&searchEndDe= (2019).
  23. Kim, K. Y., Moon, H. S., Bae, J. S., Son, J. I., Kang, J. K., Jeon, T. W., and Shi, S. K., "Survey on Landfill Minimization through Improvement of Waste Management Streams," National Institute of Environmental Research, NIER-RP2016-399 (2016).
  24. Lee, J. I, Cho, Y. M., Jung, H. Y., and Hong, L. S., "Method for Efficient Treatment of Sewage Sludge," Gyeonggi Research Institute, ISBN 979-11-8884-876-8 93530 (2018).
  25. "National Law Information Center," https://www.law.go.kr, Ministry of Government Legislation.
  26. Liu, X., Yuan, W., Di, M., Li, Z., and Wang, J., "Transfer and Fate of Microplastics During the Conventional Activated Sludge Process in One Wastewater Treatment Plant of China," Chem. Eng. J., 362, 176-182 (2019). https://doi.org/10.1016/j.cej.2019.01.033
  27. Li, X., Chen, L., Mei, Q., Dong, B., Dai, X., Ding, G., and Zeng, E. Y., "Microplastics in Sewage Sludge from the Wastewater Treatment Plants in China," Water Res., 142, 75-85 (2018). https://doi.org/10.1016/j.watres.2018.05.034
  28. Magni, S., Binelli, A., Pittura, L., Avio, C. G., Della Torre, C., Parenti, C. C., Gorbi, S., and Regoli, F., "The Fate of Microplastics in an Italian Wastewater Treatment Plant," Sci. Total Environ., 652, 602-610 (2019). https://doi.org/10.1016/j.scitotenv.2018.10.269
  29. Lares, M., Ncibi, M. C., Sillanpa, M., and Sillanpa, M., "Occurrence, Identification and Removal of Microplastic Particles and Fibers in Conventional Activated Sludge Process and Advanced MBR Technology," Water Res., 133, 236-246 (2018). https://doi.org/10.1016/j.watres.2018.01.049
  30. Mahon, A. M., O'Connell, B., Healy, M. G., O'Connor, I., Officer, R., Nash, R., and Morrison, L., "Microplastics in Sewage Sludge: Effects of Treatment," Environ. Sci. Technol., 51(2), 810-818 (2017). https://doi.org/10.1021/acs.est.6b04048
  31. Mintenig, S. M., Int-Veen, I., Loder, M. G. J., Primpke, S., and Gerdts, G., "Identification of Microplastic in Effluents of Wastewater Treatment Plants Using Focal Plane Array-Based Micro-Fourier-Transform Infrared Imaging," Water Res., 108, 365-372 (2017). https://doi.org/10.1016/j.watres.2016.11.015
  32. Gies, E. A., LeNoble, J. L., Noel, M., Etemadifar, A., Bishay, F., Hall, E. R., Ross, P. S., and Peter, S., "Retention of Microplastics in a Major Secondary Wastewater Treatment Plant in Vancouver, Canada," Mar. Pollut. Bull., 133, 533-561 (2018).
  33. Lee, H., and Kim, Y., "Treatment Characteristics of Microplastics at Biological Sewage Treatment Facilities in Korea," Mar. Pollut. Bull., 137, 1-8 (2018). https://doi.org/10.1016/j.marpolbul.2018.09.050
  34. Zhang, S., Wang, J., Liu, X., Qu, F., Wang, X., Wang, X., Li, Y., and Sun, Y., "Microplastics in the Environment: A Review of Analytical Methods, Distribution, and Biological Effects," Trends Analyt. Chem., 111, 62-72 (2019). https://doi.org/10.1016/j.trac.2018.12.002
  35. Xu, Q., Gao, Y., Xu, L., Shi, W., Wang, F., LeBlancd, G. A., Cui, S., An, L., and Lei, K., "Investigation of the Microplastics Profile in Sludge from China's Largest Water Reclamation Plant Using a Feasible Isolation Device," J. Hazard. Mater., 388, 122067 (2020). https://doi.org/10.1016/j.jhazmat.2020.122067
  36. "Performance Evaluation of Sewage Sludge reduction Project and Research on Improvement Plans," Ministry of Environment, ISBN 11-1480000-001607-01 (2019).
  37. Van Praagh, M., Hartman, C., and Brandmyrm E., "Microplastics in Landfill Leachates in the Nordic Countries," Nordic Council of Ministers, ISBN 978-92-893-5914-6 (2018).
  38. Qi, C., Huang, J., Wang, B., Deng, S., Wang, Y., and Yu, G., "Contaminants of Emerging Concern in Landfill Leachate in China: A Review," Emerg. Contam., 4(1), 1-10 (2018). https://doi.org/10.1016/j.emcon.2018.06.001
  39. Singh, R. P., and Agrawal, M., "Potential Benefits and Risks of Land Application of Sewage Sludge," Waste Manag., 28(2), 347-358 (2008). https://doi.org/10.1016/j.wasman.2006.12.010
  40. De Souza Machado, A. A., Kloas, W., Zarfl, C., Hempel, S., and Rillig, M. C., "Microplastics as an Emerging Threat to Terrestrial Ecosystems," Glob. Chang. Biol., 24(4), 1405-1416 (2018).
  41. Zubris, K. A. V., and Richards, B. K., "Synthetic Fibers as an Indicator of Land Application of Sludge," Environ. Pollut., 138(2), 201-211 (2005). https://doi.org/10.1016/j.envpol.2005.04.013
  42. McCarty, P. L., Bae, J., and Kim, J., "Domestic Wastewater Treatment as a Net Energy Producer - Can This Be Achieved," Environ. Sci. Technol., 45, 7100-7106 (2011). https://doi.org/10.1021/es2014264
  43. Wang, X., Zhao, B., Zhang, A., and Sha, Z., "The Present Situation and Research Progress of Treatment of Sludge from City Sewage Treatment Plant," Tianjin Daxue Xuebao, 30 (2015).
  44. Ji, M.-K., and Ahn, J., "Management Plans of Microplastic from Landfill: Focusing on Leachate Sources," Korea Environment Institute, ISBN 979-11-5980-322-2 95530 (2019).
  45. Raheem, A., Sikarwar, V. S., He, J., Dastyar, W., Dionysiou, D. D., Wang, W., and Zhao, M., "Opportunities and Challenges in Sustainable Treatment and Resource Reuse of Sewage Sludge: A Review," Chem. Eng. J., 337, 616-641 (2018). https://doi.org/10.1016/j.cej.2017.12.149
  46. Lee, J.-H., and Yoon, Y.-M., "Comparison of Nutrient Balance and Nutrient Loading Index for Cultivated Land Nutrient Management," Korean J. Environ. Biol., 37(4), 554-567 (2019). https://doi.org/10.11626/KJEB.2019.37.4.554
  47. Yi, S., Jo, J. H., Lim, H. S., Lee, W. J., and Park, H. J., "Analysis of Landfill Resource Recovery Potentials and Strategies for Managing Future Landfills," Korea Environment Institute, ISBN 979-11-5980-141-9 93530 (2019).