References
- Daryanto S, Wang L, Jacinthe PA (2016) Global synthesis of drought effects on maize and wheat production. PLoS One 11(5): e0156362 https://doi.org/10.1371/journal.pone.0156362
- Zhou Y, Tao Y, Zhu J, Miao J, Liu J, Liu Y, Yi C, Yang Z, Gong Z, Liang G (2017) GNS4, a novel allele of DWARF11, regulates grain number and grain size in a high-yield rice variety. Rice 10(1): 1-11 https://doi.org/10.1186/s12284-016-0141-2
- Ramakrishna C, Singh S, Raghavendrarao S, Padaria JC, Mohanty S, Sharma TR, Solanke AU (2018) The membrane tethered transcription factor EcbZIP17 from finger millet promotes plant growth and enhances tolerance to abiotic stresses. Sci Rep 8(1): 1-14 https://doi.org/10.1038/s41598-017-17765-5
- Yang L, Wu L, Chang W, Li Z, Miao M, Li Y, Yang J, Liu Z, Tan J (2018) Overexpression of the maize E3 ubiquitin ligase gene ZmAIRP4 enhances drought stress tolerance in Arabidopsis. Plant Physiol Biochem 123: 34-42 https://doi.org/10.1016/j.plaphy.2017.11.017
- Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17(3): 287-291 https://doi.org/10.1038/7036
- Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. PNAS 103(35): 12987-12992 https://doi.org/10.1073/pnas.0604882103
- Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci 10(2): 88-94 https://doi.org/10.1016/j.tplants.2004.12.012
- Hernandez-Garcia CM, Finer JJ (2014) Identification and validation of promoters and cis-acting regulatory elements. Plant Sci 217: 109-119 https://doi.org/10.1016/j.plantsci.2013.12.007
- Leavitt JM, Tong A, Tong J, Pattie J, Alper HS (2016) Coordinated transcription factor and promoter engineering to establish strong expression elements in Saccharomyces cerevisiae. Biotechnol J 11(7): 866-876 https://doi.org/10.1002/biot.201600029
- Yamaguchi-Shinozaki K, Shinozaki K (1993) Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen Genet 236(2-3): 331-340 https://doi.org/10.1007/BF00277130
- Soderman E, Mattsson J, Engstrom P (1996) The Arabidopsis homeobox gene ATHB-7 is induced by water deficit and by abscisic acid. Plant J 10(2): 375-381 https://doi.org/10.1046/j.1365-313X.1996.10020375.x
- Savoure A, Hua XJ, Bertauche N, Van Montagu M, Verbruggen N (1997) Abscisic acid-independent and abscisic acid-dependent regulation of proline biosynthesis following cold and osmotic stresses in Arabidopsis thaliana. Mol Gen Genet 254(1): 104-109 https://doi.org/10.1007/s004380050397
- Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought-and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J. 29(4) 417-426 https://doi.org/10.1046/j.0960-7412.2001.01227.x
- Hundertmark M, Hincha DK (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9(1): 118 https://doi.org/10.1186/1471-2164-9-118
- Bhaskara GB, Nguyen TT, Verslues PE (2012) Unique drought resistance functions of the highly ABA-induced clade A protein phosphatase 2Cs. Plant Physiol 160(1): 379-395 https://doi.org/10.1104/pp.112.202408
- Hsieh EJ, Cheng MC, Lin TP (2013) Functional characterization of an abiotic stress-inducible transcription factor AtERF53 in Arabidopsis thaliana. Plant Mol Biol 82(3): 223-237 https://doi.org/10.1007/s11103-013-0054-z
- Shi H, Chen Y, Qian Y, Chan Z (2015) Low temperature-induced 30 (LTI30) positively regulates drought stress resistance in Arabidopsis: effect on abscisic acid sensitivity and hydrogen peroxide accumulation. Front Plant Sci 6: 893 https://doi.org/10.3389/fpls.2015.00893
- Kim JS, Mizoi J, Yoshida T, Fujita Y, Nakajima J, Ohori T, Todaka D, Nakashima K, Hirayama T, Shinozaki K, Yamaguchi-Shinozaki K (2011) An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis. Plant Cell Physol 52(12): 2136-2146 https://doi.org/10.1093/pcp/pcr143
- Baker SS, Wilhelm KS, Thomashow MF (1994) The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought-and ABA-regulated gene expression. Plant Mol Biol 24(5): 701-713 https://doi.org/10.1007/BF00029852
- Kim HJ, Kim YK, Park JY, Kim J (2002) Light signalling mediated by phytochrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana. Plant Physiol. 29(6): 693-704
- Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression. Plant Cell 9(10): 1859-1868 https://doi.org/10.1105/tpc.9.10.1859
- De Bruxelles GL, Peacock WJ, Dennis ES, Dolferus R (1996) Abscisic acid induces the alcohol dehydrogenase gene in Arabidopsis. Plant Physiol 111(2) 381-391 https://doi.org/10.1104/pp.111.2.381
- Van der Weele CM, Spollen WG, Sharp RE, Baskin TI (2000) Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media. J Exp Bot 51(350): 1555-1562 https://doi.org/10.1093/jexbot/51.350.1555
- Chang WC, Lee TY, Huang HD, Huang HY, Pan RL (2008) PlantPAN: Plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups. BMC Genomics 9(1): 561 https://doi.org/10.1186/1471-2164-9-561
- Mubeen H, Raza S (2010) In Silico approach to identify transcription factor binding sites and Cis-regulatory elements in tubulin gene promoter. IJSPR 6(5): 31-33
- Xiang C, Han P, Lutziger I, Wang K, Oliver DJ (1999) A mini binary vector series for plant transformation. Plant Mol Biol 40(4): 711-717 https://doi.org/10.1023/A:1006201910593
- Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6): 735-743 https://doi.org/10.1046/j.1365-313x.1998.00343.x
- Jefferson RA (1988) Plant reporter genes: the GUS gene fusion system. In Genetic engineering (pp. 247-263). Springer, Boston
- Vitha S, Benes K, Michalova M, Ondrej M (1993) Quantitative β-glucuronidase assay in transgenic plants. Biol Plant 35(1): 151-155 https://doi.org/10.1007/BF02921141
- Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1-2): 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
- Yoo SD, Cho YH, Sheen J (2007) Arabidops is mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2(7): 1565 https://doi.org/10.1038/nprot.2007.199
- Ko JH, Kim WC, Han KH (2009) Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis. Plant J. 60(4): 649-665 https://doi.org/10.1111/j.1365-313X.2009.03989.x
- Kim WC, Ko JH, Kim JY, Kim J, Bae HJ, Han KH (2013) MYB 46 directly regulates the gene expression of secondary wall-associated cellulose synthases in Arabidopsis. Plant J 73(1): 26-36 https://doi.org/10.1111/j.1365-313x.2012.05124.x
- Kirby J, Kavanagh TA (2002) NAN fusions: a synthetic sialidase reporter gene as a sensitive and versatile partner for GUS. Plant J 32(3): 391-400 https://doi.org/10.1046/j.1365-313x.2002.01422.x
- Gong W, He K, Covington M, Dinesh-Kumar SP, Snyder M, Harmer SL, Zhu YX, Deng XW (2008) The development of protein microarrays and their applications in DNA-protein and protein-protein interaction analyses of Arabidopsis transcription factors. Mol Plant 1(1): 27-41 https://doi.org/10.1093/mp/ssm009
- Cheng MC, Hsieh EJ, Chen JH, Chen HY, Lin TP (2012) Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response. Plant physiol. 158(1): 363-375 https://doi.org/10.1104/pp.111.189738
- Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45(3): 346-350 https://doi.org/10.1093/pcp/pch037
- Msanne J, Lin J, Stone JM, Awada T (2011) Characterization of abiotic stress-responsive Arabidopsis thaliana RD29A and RD29B genes and evaluation of transgenes. Planta 234(1): 97-107 https://doi.org/10.1007/s00425-011-1387-y
- Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6(2): 251-264 https://doi.org/10.1105/tpc.6.2.251
- Maruyama K, Takeda M, Kidokoro S, Yamada K, Sakuma Y, Urano K, Fujita M, Yoshiwara K, Matsukura S, Morishita Y, Sasaki R, Suzuki H, Saito K, Shibata D, Shinozaki K, Yamaguchi-Shinozaki K (2009) Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant physiol 150(4): 1972-1980 https://doi.org/10.1104/pp.109.135327
- Chen H, Hwang JE, Lim CJ, Kim DY, Lee SY, Lim CO (2010) Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response. Biochem. Biophys Res Commun. 401(2): 238-244 https://doi.org/10.1016/j.bbrc.2010.09.038