DOI QR코드

DOI QR Code

Construction of novel promoters based on the characteristics of drought stress specific cis-regulatory element

가뭄 스트레스 특이적인 cis-regulatory element의 특성을 기반으로 한 신규 프로모터 구축

  • Kim, Kihwan (Department of Applied Biosciences, Kyungpook National University) ;
  • Kim, Byeonggyu (Department of Integrative Biology, Kyungpook National University) ;
  • Shin, Juhyung (Department of Integrative Biology, Kyungpook National University) ;
  • Kim, Won-Chan (Department of Applied Biosciences, Kyungpook National University)
  • Received : 2020.11.09
  • Accepted : 2020.12.31
  • Published : 2021.03.31

Abstract

Droughts are one of the abiotic stresses that hinders the growth and productivity of crop plants. Coping with abiotic stress is necessary to understand the molecular regulatory networks that makes plants respond to adverse environmental conditions. In our experiment to find a combination that can cope with abiotic stress (respond to drought), we screened 5 stress-inducible promoters that are expressed only under stress conditions. This founded 36 cis-elements in stress-inducible promoters. With the result we designed 2 synthetic promoters (BL1, BL2) for fine-controlled regulation by assembling cis-elements from the native promoters, which are expressed only under stress caused by droughts. Analysis of the transgenic plant (BL1-GUS, BL2-GUS) showed that the synthetic promoters increased the expression of β-glucuronidase (GUS) in transgenic plants under desiccation. Also in the transient activation assay demonstrated that synthetic promoters induced the co-transformation of effector DREB1A and DREB2C. These results expect that the synthetic promoter with a combination of drought-specific elements can be used to respond to various abiotic stress and is resistant to stress without causing growth retardation.

가뭄은 작물의 성장과 생산성을 방해하는 비 생물학적 스트레스 중 하나다. 비 생물학적 스트레스에 대응하기 위해서는 식물이 불리한 환경 조건에서 스트레스에 나타내는 분자 조절 네트워크를 이해해야 한다. 비 생물학적 스트레스 (가뭄에 대응)에 대처할 수 있는 조합을 선별하기 위한 실험에서 스트레스 조건에서만 발현되는 5개의 가뭄 스트레스 유도성 프로모터를 선별하였으며, 이 중 36개의 cis-regulatory element를 선별하였다. 그 결과 가뭄 스트레스에서만 발현되는 유전자의 프로모터에서 cis-regulatory element를 새롭게 조합하여 미세 제어 조절을 할 수 있는 2 개의 합성프로모터(BL1, BL2)를 제작하였다. 합성프로모터를 포함한 형질전환식물(BL1-GUS, BL2-GUS)의 분석은 합성프로모터가 건조 조건에서 형질전환식물 내의 GUS 유전자의 발현을 증가시키는 것을 통하여 확인하였다. 또한 Transient activation assay를 통해 DREB1A와 DREB2C에 의해 합성프로모터가 활성화되는 것도 확인하였다. 이러한 결과는 가뭄 특이적인 cis-regulatory element의 조합에 의해 제작한 합성프로모터가 다양한 비 생물학적 스트레스에 반응하고, 식물의 성장 지연을 유발하지 않고 스트레스에 효과적으로 대응할 수 있을 것이라 예상할 수 있다.

Keywords

References

  1. Daryanto S, Wang L, Jacinthe PA (2016) Global synthesis of drought effects on maize and wheat production. PLoS One 11(5): e0156362 https://doi.org/10.1371/journal.pone.0156362
  2. Zhou Y, Tao Y, Zhu J, Miao J, Liu J, Liu Y, Yi C, Yang Z, Gong Z, Liang G (2017) GNS4, a novel allele of DWARF11, regulates grain number and grain size in a high-yield rice variety. Rice 10(1): 1-11 https://doi.org/10.1186/s12284-016-0141-2
  3. Ramakrishna C, Singh S, Raghavendrarao S, Padaria JC, Mohanty S, Sharma TR, Solanke AU (2018) The membrane tethered transcription factor EcbZIP17 from finger millet promotes plant growth and enhances tolerance to abiotic stresses. Sci Rep 8(1): 1-14 https://doi.org/10.1038/s41598-017-17765-5
  4. Yang L, Wu L, Chang W, Li Z, Miao M, Li Y, Yang J, Liu Z, Tan J (2018) Overexpression of the maize E3 ubiquitin ligase gene ZmAIRP4 enhances drought stress tolerance in Arabidopsis. Plant Physiol Biochem 123: 34-42 https://doi.org/10.1016/j.plaphy.2017.11.017
  5. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17(3): 287-291 https://doi.org/10.1038/7036
  6. Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. PNAS 103(35): 12987-12992 https://doi.org/10.1073/pnas.0604882103
  7. Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci 10(2): 88-94 https://doi.org/10.1016/j.tplants.2004.12.012
  8. Hernandez-Garcia CM, Finer JJ (2014) Identification and validation of promoters and cis-acting regulatory elements. Plant Sci 217: 109-119 https://doi.org/10.1016/j.plantsci.2013.12.007
  9. Leavitt JM, Tong A, Tong J, Pattie J, Alper HS (2016) Coordinated transcription factor and promoter engineering to establish strong expression elements in Saccharomyces cerevisiae. Biotechnol J 11(7): 866-876 https://doi.org/10.1002/biot.201600029
  10. Yamaguchi-Shinozaki K, Shinozaki K (1993) Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen Genet 236(2-3): 331-340 https://doi.org/10.1007/BF00277130
  11. Soderman E, Mattsson J, Engstrom P (1996) The Arabidopsis homeobox gene ATHB-7 is induced by water deficit and by abscisic acid. Plant J 10(2): 375-381 https://doi.org/10.1046/j.1365-313X.1996.10020375.x
  12. Savoure A, Hua XJ, Bertauche N, Van Montagu M, Verbruggen N (1997) Abscisic acid-independent and abscisic acid-dependent regulation of proline biosynthesis following cold and osmotic stresses in Arabidopsis thaliana. Mol Gen Genet 254(1): 104-109 https://doi.org/10.1007/s004380050397
  13. Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought-and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J. 29(4) 417-426 https://doi.org/10.1046/j.0960-7412.2001.01227.x
  14. Hundertmark M, Hincha DK (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9(1): 118 https://doi.org/10.1186/1471-2164-9-118
  15. Bhaskara GB, Nguyen TT, Verslues PE (2012) Unique drought resistance functions of the highly ABA-induced clade A protein phosphatase 2Cs. Plant Physiol 160(1): 379-395 https://doi.org/10.1104/pp.112.202408
  16. Hsieh EJ, Cheng MC, Lin TP (2013) Functional characterization of an abiotic stress-inducible transcription factor AtERF53 in Arabidopsis thaliana. Plant Mol Biol 82(3): 223-237 https://doi.org/10.1007/s11103-013-0054-z
  17. Shi H, Chen Y, Qian Y, Chan Z (2015) Low temperature-induced 30 (LTI30) positively regulates drought stress resistance in Arabidopsis: effect on abscisic acid sensitivity and hydrogen peroxide accumulation. Front Plant Sci 6: 893 https://doi.org/10.3389/fpls.2015.00893
  18. Kim JS, Mizoi J, Yoshida T, Fujita Y, Nakajima J, Ohori T, Todaka D, Nakashima K, Hirayama T, Shinozaki K, Yamaguchi-Shinozaki K (2011) An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis. Plant Cell Physol 52(12): 2136-2146 https://doi.org/10.1093/pcp/pcr143
  19. Baker SS, Wilhelm KS, Thomashow MF (1994) The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought-and ABA-regulated gene expression. Plant Mol Biol 24(5): 701-713 https://doi.org/10.1007/BF00029852
  20. Kim HJ, Kim YK, Park JY, Kim J (2002) Light signalling mediated by phytochrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana. Plant Physiol. 29(6): 693-704
  21. Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression. Plant Cell 9(10): 1859-1868 https://doi.org/10.1105/tpc.9.10.1859
  22. De Bruxelles GL, Peacock WJ, Dennis ES, Dolferus R (1996) Abscisic acid induces the alcohol dehydrogenase gene in Arabidopsis. Plant Physiol 111(2) 381-391 https://doi.org/10.1104/pp.111.2.381
  23. Van der Weele CM, Spollen WG, Sharp RE, Baskin TI (2000) Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media. J Exp Bot 51(350): 1555-1562 https://doi.org/10.1093/jexbot/51.350.1555
  24. Chang WC, Lee TY, Huang HD, Huang HY, Pan RL (2008) PlantPAN: Plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups. BMC Genomics 9(1): 561 https://doi.org/10.1186/1471-2164-9-561
  25. Mubeen H, Raza S (2010) In Silico approach to identify transcription factor binding sites and Cis-regulatory elements in tubulin gene promoter. IJSPR 6(5): 31-33
  26. Xiang C, Han P, Lutziger I, Wang K, Oliver DJ (1999) A mini binary vector series for plant transformation. Plant Mol Biol 40(4): 711-717 https://doi.org/10.1023/A:1006201910593
  27. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6): 735-743 https://doi.org/10.1046/j.1365-313x.1998.00343.x
  28. Jefferson RA (1988) Plant reporter genes: the GUS gene fusion system. In Genetic engineering (pp. 247-263). Springer, Boston
  29. Vitha S, Benes K, Michalova M, Ondrej M (1993) Quantitative β-glucuronidase assay in transgenic plants. Biol Plant 35(1): 151-155 https://doi.org/10.1007/BF02921141
  30. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1-2): 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  31. Yoo SD, Cho YH, Sheen J (2007) Arabidops is mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2(7): 1565 https://doi.org/10.1038/nprot.2007.199
  32. Ko JH, Kim WC, Han KH (2009) Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis. Plant J. 60(4): 649-665 https://doi.org/10.1111/j.1365-313X.2009.03989.x
  33. Kim WC, Ko JH, Kim JY, Kim J, Bae HJ, Han KH (2013) MYB 46 directly regulates the gene expression of secondary wall-associated cellulose synthases in Arabidopsis. Plant J 73(1): 26-36 https://doi.org/10.1111/j.1365-313x.2012.05124.x
  34. Kirby J, Kavanagh TA (2002) NAN fusions: a synthetic sialidase reporter gene as a sensitive and versatile partner for GUS. Plant J 32(3): 391-400 https://doi.org/10.1046/j.1365-313x.2002.01422.x
  35. Gong W, He K, Covington M, Dinesh-Kumar SP, Snyder M, Harmer SL, Zhu YX, Deng XW (2008) The development of protein microarrays and their applications in DNA-protein and protein-protein interaction analyses of Arabidopsis transcription factors. Mol Plant 1(1): 27-41 https://doi.org/10.1093/mp/ssm009
  36. Cheng MC, Hsieh EJ, Chen JH, Chen HY, Lin TP (2012) Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response. Plant physiol. 158(1): 363-375 https://doi.org/10.1104/pp.111.189738
  37. Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45(3): 346-350 https://doi.org/10.1093/pcp/pch037
  38. Msanne J, Lin J, Stone JM, Awada T (2011) Characterization of abiotic stress-responsive Arabidopsis thaliana RD29A and RD29B genes and evaluation of transgenes. Planta 234(1): 97-107 https://doi.org/10.1007/s00425-011-1387-y
  39. Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6(2): 251-264 https://doi.org/10.1105/tpc.6.2.251
  40. Maruyama K, Takeda M, Kidokoro S, Yamada K, Sakuma Y, Urano K, Fujita M, Yoshiwara K, Matsukura S, Morishita Y, Sasaki R, Suzuki H, Saito K, Shibata D, Shinozaki K, Yamaguchi-Shinozaki K (2009) Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant physiol 150(4): 1972-1980 https://doi.org/10.1104/pp.109.135327
  41. Chen H, Hwang JE, Lim CJ, Kim DY, Lee SY, Lim CO (2010) Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response. Biochem. Biophys Res Commun. 401(2): 238-244 https://doi.org/10.1016/j.bbrc.2010.09.038