DOI QR코드

DOI QR Code

진단용 방사성의약품의 품질관리시험 및 기준

Quality Control Tests and Acceptance Criteria of Diagnostic Radiopharmaceuticals

  • 박준영 (연세대학교 의과대학 세브란스병원 핵의학과)
  • Park, Jun Young (Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine)
  • 투고 : 2021.02.25
  • 심사 : 2021.03.04
  • 발행 : 2021.03.31

초록

방사성의약품은 방사선을 방출하는 방사성동위원소를 의약품에 표지하여 진단 및 치료 목적으로 사용하는 의약품이다. 방사성의약품은 제조 및 품질관리기준을 준수하여 제조해야 하며, 환자에게 투여되기 전 품질관리시험을 실시하여 안전성을 입증해야 한다. 방사성의약품의 품질관리는 시험의 특성에 따라 생물학적 시험과 물리화학적 시험으로 분류할 수 있다. 생물학적 시험에는 무균시험, 엔도톡신시험, 여과막 완전성 시험이 있으며, 물리화학적 시험에는 성상, 확인시험, 방사화학적 순도시험, 이핵종 시험, 화학적 순도시험, 잔류용매 시험, pH, 불용성이물시험, 함량 등이 있다. 주사제의 형태로 제조되는 방사성의약품은 무균상태이어야 하므로 제조 후 무균시험 및 여과막 완전성 시험을 수행하여 완제의약품의 무균성을 입증하며, 원자재 및 제조과정에서 혼입될 수 있는 발열성 물질은 환자의 생명에 위험을 줄 수 있으므로 엔도톡신시험을 실시하여 발열물질의 오염여부를 확인한다. 방사성의약품은 화학적 합성에 의해 제조되기 때문에 완제의약품 내 부산물 및 불순물의 혼입여부를 평가해야 한다. 제조된 방사성의약품의 성상 및 불용성이물을 육안으로 확인하며, 완제의약품 내 잔류할 수 있는 부산물 및 유기용매 등은 환자에게 유해할 수 있으므로 화학적순도, 잔류용매 및 pH를 평가한다. 그리고 방사성의약품으로부터 방출되는 방사선을 이용하여 반감기, 방사화학적 순도, 이핵종, 함량 등을 평가하여 목적하는 방사성동위원소가 기준에 적합하게 의약품에 표지되었는지를 확인한다. 특히, 방사성의약품은 일반의약품과 다르게 방사선 피폭의 위험성이 항상 존재하기 때문에 품질관리 시 검사시간을 줄이도록 노력해야 하며, 방사성물질에 오염되지 않게 주의를 기울여야 한다.

Radiopharmaceuticals are drugs that contain radioisotopes and are used in the diagnosis, treatment, or investigation of diseases. Radiopharmaceuticals must be manufactured in compliance with good manufacturing practice regulations and subjected to quality control before they are administered to patients to ensure the safety of the drug. Radiopharmaceuticals for administration to humans need to be sterile and pyrogen-free. Hence, sterility tests and membrane filter integrity tests are carried out to confirm the asepticity of the finished drug product, and a bacterial endotoxin test conducted to assess contamination, if any, by pyrogens. The physical appearance and the absence of foreign insoluble substances should be confirmed by a visual inspection. The chemical purity, residual solvents, and pH should be evaluated because residual by-products and impurities in the finished product can be harmful to patients. The half-life, radiochemical purity, radionuclidic purity, and strength need to be assessed by analyzing the radiation emitted from radiopharmaceuticals to verify that the radioisotope contents are properly labeled on pharmaceuticals. Radiopharmaceuticals always carry the risk of radiation exposure. Therefore, the time taken for quality control tests should be minimized and care should be taken to prevent radiation exposure during handling. This review discusses the quality control procedures and acceptance criteria for a diagnostic radiopharmaceutical.

키워드

참고문헌

  1. Tewson TJ, Krohn KA. PET radiopharmaceuticals: state-of-the-art and future prospects. Semin Nucl Med. 1998;28:221-234. https://doi.org/10.1016/s0001-2998(98)80028-7
  2. Saha GB. Diagnostic uses of radiopharmaceuticals in nuclear medicine. In: Saha GB, editor. Fundamentals of nuclear pharmacy. New York, NY: Springer; 1998. p238-319.
  3. Koh CS. Nucear Medicine. 3rd ed. Seoul: Korea Medical Book; 2008. p7-11.
  4. Lau J, Rousseau E, Kwon D, Lin KS, Benard F, Chen X. Insight into the development of PET radiopharmaceuticals for oncology. Cancers (Basel). 2020;12:1312. https://doi.org/10.3390/cancers12051312
  5. Lammertsma AA. PET/SPECT: functional imaging beyond flow. Vision Res. 2001;41:1277-1281. https://doi.org/10.1016/s0042-6989(00)00262-5
  6. Blankenberg FG, Strauss HW. Nuclear medicine applications in molecular imaging. J Magn Reson Imaging. 2002;16:352-361. https://doi.org/10.1002/jmri.10171
  7. Alsharef S, Alanazi M, Alharthi F, Qandil D, Qushawy M. Review about radiopharmaceuticals: preparation, radioactivity, and applications. Int J App Pharm. 2020;12:8-15. https://doi.org/10.22159/ijap.2020v12i3.37150
  8. Vallabhajosula S. Radioactivity. In: Vallabhajosula S, editor. Molecular imaging. Berlin, Heidelberg: Springer; 2009. p35-44.
  9. Lee BQ, Kibedi T, Stuchbery AE, Robertson KA. Atomic radiations in the decay of medical radioisotopes: a physics perspective. Comput Math Methods Med. 2012;2012:651475. https://doi.org/10.1155/2012/651475
  10. Maulany GJ, Manggau FX, Jayadi J, Waremra RS, Fenanlampir CA. Radiation detection of alfa, beta, and gamma rays with geiger muller detector. Int J Mech Eng Technol. 2018;9:21-27.
  11. Kassis AI. Therapeutic radionuclides: biophysical and radiobiologic principles. Semin Nucl Med. 2008;38:358-366. https://doi.org/10.1053/j.semnuclmed.2008.05.002
  12. Berry CR, Garg P. Perspectives in molecular imaging through translational research, human medicine, and veterinary medicine. Semin Nucl Med. 2014;44:66-75. https://doi.org/10.1053/j.semnuclmed.2013.10.002
  13. Payolla FB, Massabni AC, Orvig C. Radiopharmaceuticals for diagnosis in nuclear medicine: a short review. Ecletica Quimica Journal. 44:11-19. https://doi.org/10.26850/1678-4618eqj.v44.3.2019.p11-19
  14. Baldrick P. Nonclinical safety testing of imaging agents, contrast agents and radiopharmaceuticals. J Appl Toxicol. 2021;41:95-104. https://doi.org/10.1002/jat.4054
  15. Stelmach HA, Quinn JL III. Radiopharmaceutical quality control. Semin Nucl Med. 1974;4:295-303. https://doi.org/10.1016/s0001-2998(74)80016-4
  16. Woldring MG. Radiopharmaceuticals and good radiopharmacy practice. Pharmaceutisch weekblad. 1981;3:1285-1301. https://doi.org/10.1007/BF02193377
  17. Hung JC. Quality control in nuclear pharmacy. In: Kowalsky R, editor. Radiopharmaceuticals in nuclear pharmacy and nuclear medicine, 2nd ed. Washington, DC: American Pharmacists Association; 2004. p399-450.
  18. International Atomic Energy Agency. Quality control in the production of radiopharmaceuticals. Technical report. Vienna: International Atomic Energy Agency; 2018 Oct. p1-150. IAEA-TECDOC-1856.
  19. United States Pharmacopeia. USP<71>Sterility tests. In: 2018 United States Pharmacopeia and National Formulary. United States Pharmacopeia 41-National Formulary 36. Rockville, MD: United States Pharmacopeial Convention; 2018. p5984-5991.
  20. England MR, Stock F, Gebo JET, Frank KM, Lau AF. Comprehensive evaluation of compendial USP<71>, BacT/Alert Dual-T, and Bactec FX for detection of product sterility testing contaminants. J Clin Microbiol. 2019;57:e01548-18. https://doi.org/10.1128/JCM.01548-18
  21. United States Pharmacopeia. USP<823>positron emission tomography drugs for compounding, investigational, and research uses. In: 2012 United States Pharmacopeia and national formulary. United States Pharmacopeia 35-national formulary 30. Rockville, MD: United States Pharmacopeial Convention; 2012. p398-406.
  22. United States Pharmacopeia. USP<85>bacterial endotoxins test. In: 2012 United States Pharmacopeia and national formulary. United States Pharmacopeia 35-national formulary 30. Rockville, MD: United States Pharmacopeial Convention; 2012. p5625-5629.
  23. Freudenberg MA, Galanos C. Bacterial lipopolysaccharides: structure, metabolism and mechanisms of action. Int Rev Immunol. 1990;6:207-221. https://doi.org/10.3109/08830189009056632
  24. Danner RL, Elin R, Hosseini J, Wesley R, Reilly J, Parillo J. Endotoxemia in human septic shock. Chest. 1991;99:169-175. https://doi.org/10.1378/chest.99.1.169
  25. Wachtel RE, Tsuji K. Comparison of limulus amebocyte lysates and correlation with the United States Pharmacopeial pyrogen test. Appl Environ Microbiol. 1977;33:1265-1269. https://doi.org/10.1128/AEM.33.6.1265-1269.1977
  26. Samlet S, Shedage K, Jain P, Jay Singh JB, Bahadur B, Kumar M, et al. Attributes of bacterial endotoxin test (bet) and its comparison with rabbit pyrogen test. Int J Adv Res. 2019;7:850-857. http://dx.doi.org/10.21474/IJAR01/9106
  27. Iwanaga S. Biochemical principle of limulus test for detecting bacterial endotoxins. Proc Jpn Acad Ser B Phys Biol Sci. 2007;83:110-119. https://doi.org/10.2183/pjab.83.110
  28. Iwanaga S, Morita T, Harada T, Nakamura S, Niwa M, Takada K, et al. Chromogenic substrates for horseshoe crab clotting enzyme. Its application for the assay of bacterial endotoxins. Haemostasis. 1978;7:183-188. https://doi.org/10.1159/000214260
  29. Koh CS. Nucear Medicine. 3rd ed. Seoul: Korea Medical Book; 2008. p171-195.
  30. Saha GB. Synthesis of PET radiopharmaceuticals. In: Saha GB, editor. Basics of PET imaging physics, chemistry, and regulations. New York, NY: Springer; 2004. p111-124.
  31. Hayashi K, Douhara K, Kashino G. Evaluation of the bubble point test of a 0.22-㎛ membrane filter used for the sterilizing filtration of PET radiopharmaceuticals. Ann Nucl Med. 2014;28:586-592. https://doi.org/10.1007/s12149-014-0830-0
  32. Jornitz MW. Integrity testing. In: Jornitz MW, editor. Sterile filtration. advances in biochemical engineering, vol 98. Berlin, Heidelberg: Springer; 2006. p143-180.
  33. Belanger AP, Byrne JF, Paolino JM, DeGrado TR. Use of pressure-hold test for sterilizing filter membrane integrity in radiopharmaceutical manufacturing. Nucl Med Biol. https://doi.org/10.1016/j.nucmedbio.2009.07.008
  34. Wells RG. Instrumentation in molecular imaging. J Nucl Cardiol. 2016:23;1343-1347. https://doi.org/10.1007/s12350-016-0498-z
  35. Decristoforo C, Zolle I, Rakias F, Imre J, Janoki G, Hesslewood SR. Quality control methods of 99mtc pharmaceuticals. In: Zolle I, editor. Technetium-99m Pharmaceuticals. Berlin, Heidelberg: Springer; 2007. p123-150.
  36. Moerlein SM. Radiopharmaceuticals for positron emission tomography. In: Kowalsky R, editor. Radiopharmaceuticals in nuclear pharmacy and nuclear medicine. 2nd ed. Washington, DC: American Pharmacists Association; 2004. p337-379.
  37. Vallabhajosula S. Quality control of PET radiopharmaceuticals. In: Vallabhajosula S, editor. Molecular imaging. Berlin, Heidelberg: Springer; 2009. p197-204.
  38. Reuhs BL, Rounds MA. High-performance liquid chromatography. In: Nielsen SS, editor. Food analysis. Boston, MA: Springer; 2010. p499-512.
  39. Molavipordanjani S, Tolmachev V, Hosseinimehr SJ. Basic and practical concepts of radiopharmaceutical purification methods. Drug Discov Today. 2019;24:315-324. https://doi.org/10.1016/j.drudis.2018.09.018
  40. Shukla J, Vatsa R, Garg N, Bhusari P, Watts A, Mittal BR. Quality control of positron emission tomography radiopharmaceuticals: An institutional experience. Indian J Nucl Med. 2013;28:200-206. https://doi.org/10.4103/0972-3919.121963
  41. Cole EL, Stewart MN, Littich R, Hoareau R, Scott PJ. Radiosyntheses using fluorine-18: the art and science of late stage fluorination. Curr Top Med Chem. 2014;14:875-900. https://doi.org/10.2174/1568026614666140202205035
  42. Blevins DW, Rigney GH, Fang MY, Akula MR, Osborne DR. Novel methods for the quantification of toxic, residual phase transfer catalyst in fluorine-18 labeled radiotracers. Nucl Med Biol. 2019;74-75:41-48. https://doi.org/10.1016/j.nucmedbio.2019.07.008
  43. Ma Y, Huang BX, Channing MA, Eckelman WC. Quantification of Kryptofix 2.2.2 in 2-[(18)F]FDG and other radiopharmaceuticals by LC/MS/MS. Nucl Med Biol. 2002;29:125-129. https://doi.org/10.1016/s0969-8051(01)00269-4
  44. Halvorsen NE, Kvernenes OH. A fast and simple method for the determination of TBA in 18F-labeled radiopharmaceuticals. Pharmaceuticals (Basel). 2020;13:27. https://doi.org/10.3390/ph13020027
  45. Kuntzsch M, Lamparter D, Bruggener N, Muller M, Kienzle GJ, Reischl G. Development and successful validation of simple and fast TLC spot tests for determination of Kryptofix® 2.2.2 and tetrabutylammonium in 18F-labeled radiopharmaceuticals. Pharmaceuticals (Basel). 2014;7:621-633. https://doi.org/10.3390/ph7050621
  46. Klok RP, Windhorst AD. Residual solvent analysis by gas chromatography in radiopharmaceutical formulations containing up to 12% ethanol. Nucl Med Biol. 2006;33:935-938. https://doi.org/10.1016/j.nucmedbio.2006.07.003
  47. Coenen HH, Gee AD, Adam M, Antoni G, Cutler CS, Fujibayashi Y, et al. Consensus nomenclature rules for radiopharmaceutical chemistry - Setting the record straight. Nucl Med Biol. 2017;55:v-xi. https://doi.org/ 10.1016/j.nucmedbio.2017.09.004
  48. Choe YS. Molar activity of radiopharmaceuticals. J Radiopharm Mol Probes. 2018;4:22-25. https://doi.org/10.22643/JRMP.2018.4.1.22
  49. Koh CS. Nucear Medicine. 3rd ed. Seoul: Korea Medical Book; 2008. p128-170.
  50. International Atomic Energy Agency. Radioisotope handling facilities and automation of radioisotope production. Technical report. Vienna: International Atomic Energy Agency; 2004 Oct. p1-65. IAEA-TECDOC-1430.