DOI QR코드

DOI QR Code

Identification and Monitoring of Lactobacillus delbrueckii Subspecies Using Pangenomic-Based Novel Genetic Markers

  • Kim, Eiseul (Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Cho, Eun-Ji (Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Yang, Seung-Min (Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Kim, Hae-Yeong (Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University)
  • Received : 2020.09.21
  • Accepted : 2020.10.19
  • Published : 2021.02.28

Abstract

Genetic markers currently used for the discrimination of Lactobacillus delbrueckii subspecies have low efficiency for identification at subspecies level. Therefore, our objective in this study was to select novel genetic markers for accurate identification and discrimination of six L. delbrueckii subspecies based on pangenome analysis. We evaluated L. delbrueckii genomes to avoid making incorrect conclusions in the process of selecting genetic markers due to mislabeled genomes. Genome analysis showed that two genomes of L. delbrueckii subspecies deposited at NCBI were misidentified. Based on these results, subspecies-specific genetic markers were selected by comparing the core and pangenomes. Genetic markers were confirmed to be specific for 59,196,562 genome sequences via in silico analysis. They were found in all strains of the same subspecies, but not in other subspecies or bacterial strains. These genetic markers also could be used to accurately identify genomes at the subspecies level for genomes known at the species level. A real-time PCR method for detecting three main subspecies (L. delbrueckii subsp. delbrueckii, lactis, and bulgaricus) was developed to cost-effectively identify them using genetic markers. Results showed 100% specificity for each subspecies. These genetic markers could differentiate each subspecies from 44 other lactic acid bacteria. This real-time PCR method was then applied to monitor 26 probiotics and dairy products. It was also used to identify 64 unknown strains isolated from raw milk samples and dairy products. Results confirmed that unknown isolates and subspecies contained in the product could be accurately identified using this real-time PCR method.

Keywords

References

  1. El Kafsi H, Binesse J, Loux V, Buratti J, Boudebbouze S, Dervyn R, et al. 2014. Lactobacillus delbrueckii ssp. lactis and ssp. bulgaricus: A chronicle of evolution in action. BMC. Genomics 15: 407. https://doi.org/10.1186/1471-2164-15-407
  2. Zanni E, Schifano E, Motta S, Sciubba F, Palleschi C, Mauri P, et al. 2017. Combination of metabolomic and proteomic analysis revealed different features among Lactobacillus delbrueckii subspecies bulgaricus and lactis strains while in vivo testing in the model organism Caenorhabditis elegans highlighted probiotic properties. Front. Microbiol. 8: 1206. https://doi.org/10.3389/fmicb.2017.01206
  3. van De Guchte M, Penaud S, Grimaldi C, Barbe V, Bryson K, Nicolas P, et al. 2006. The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc. Natl. Acad. Sci. USA 103: 9274-9279. https://doi.org/10.1073/pnas.0603024103
  4. Nikolaou A, Saxami G, Kourkoutas Y, Galanis A. 2011. A new methodology for rapid detection of Lactobacillus delbrueckii subsp. bulgaricus based on multiplex PCR. J. Microbiol. Methods 84: 362-364. https://doi.org/10.1016/j.mimet.2010.12.010
  5. Weiss N, Schillinger U, Kandler O. 1983. Lactobacillus lactis, Lactobacillus leichmannii and Lactobacillus bulgaricus, subjective synonyms of Lactobacillus delbrueckii, and description of Lactobacillus delbrueckii subsp. lactis comb. nov. and Lactobacillus delbrueckii subsp. bulgaricus comb. nov. Syst. Appl. Microbiol. 4: 552-557. https://doi.org/10.1016/S0723-2020(83)80012-5
  6. Dellaglio F, Felis GE, Castioni A, Torriani S, Germond JE. 2005. Lactobacillus delbrueckii subsp. indicus subsp. nov., isolated from Indian dairy products. Int. J. Syst. Evol. Microbiol. 55: 401-404. https://doi.org/10.1099/ijs.0.63067-0
  7. Kudo Y, Oki K, Watanabe K. 2012. Lactobacillus delbrueckii subsp. sunkii subsp. nov., isolated from sunki, a traditional Japanese pickle. Int. J. Syst. Evol. Microbiol. 62: 2643-2649. https://doi.org/10.1099/ijs.0.037051-0
  8. Adimpong DB, Nielsen DS, Sorensen KI, Vogensen FK, Sawadogo-Lingani H, Derkx PMF, et al. 2013. Lactobacillus delbrueckii subsp. jakobsenii subsp. nov., isolated from dolo wort, an alcoholic fermented beverage in Burkina Faso. Int. J. Syst. Evol. Microbiol. 63: 3720-3726. https://doi.org/10.1099/ijs.0.048769-0
  9. Song Y, Sun Z, Guo C, Wu Y, Liu W, Yu J, et al. 2016. Genetic diversity and population structure of Lactobacillus delbrueckii subspecies bulgaricus isolated from naturally fermented dairy foods. Sci. Rep. 6: 22704. https://doi.org/10.1038/srep22704
  10. Giraffa G, Lazzi C, Gatti M, Rossetti L, Mora D, Neviani E. 2003. Molecular typing of Lactobacillus delbrueckii of dairy origin by PCR-RFLP of protein-coding genes. Int. J. Food Microbiol. 82: 163-172. https://doi.org/10.1016/S0168-1605(02)00262-3
  11. Cebeci A, Gürakan GC. 2011. Comparative typing of L. delbrueckii subsp. bulgaricus strains using multilocus sequence typing and RAPD-PCR. Eur. Food Res. Technol. 233: 377-385. https://doi.org/10.1007/s00217-011-1526-5
  12. Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, et al. 2020. A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 70: 2782-2858. https://doi.org/10.1099/ijsem.0.004107
  13. Kim E, Yang SM, Lim B, Park SH, Rackerby B, Kim HY. 2020. Design of PCR assays to specifically detect and identify 37 Lactobacillus species in a single 96 well plate. BMC Microbiol. 20: 96. https://doi.org/10.1186/s12866-020-01781-z
  14. Ibrahim GM, Morin PM. 2018. Salmonella serotyping using whole genome sequencing. Front. Microbiol. 9: 2993. https://doi.org/10.3389/fmicb.2018.02993
  15. Caputo A, Fournier PE, Raoult D. 2019. Genome and pan-genome analysis to classify emerging bacteria. Biol. Direct. 14: 5. https://doi.org/10.1186/s13062-019-0234-0
  16. Caputo A, Merhej V, Georgiades K, Fournier PE, Croce O, Robert C, et al. 2015. Pan-genomic analysis to redefine species and subspecies based on quantum discontinuous variation: the Klebsiella paradigm. Biol. Direct. 10: 55. https://doi.org/10.1186/s13062-015-0085-2
  17. Eren AM, Esen O, Quince C, Vineis J, Sogin M, Delmont T. 2015. Anvi'o: an advanced analysis and visualization platform for 'omics data. PeerJ 3: e1319. https://doi.org/10.7717/peerj.1319
  18. Chaudhari NM, Gupta VK, Dutta C. 2016. BPGA- an ultra-fast pan-genome analysis pipeline. Sci. Rep. 6: 24373. https://doi.org/10.1038/srep24373
  19. Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460-2461. https://doi.org/10.1093/bioinformatics/btq461
  20. Kim E, Yang SM, Cho EJ, Kim HY. 2020. Novel real-time PCR assay for Lactobacillus casei group species using comparative genomics. Food Microbiol. 90: 103485. https://doi.org/10.1016/j.fm.2020.103485
  21. Wuyts S, Wittouck S, De Boeck I, Allonsius CN, Pasolli E, Segata N, et al. 2017. Large-scale phylogenomics of the Lactobacillus casei group highlights taxonomic inconsistencies and reveals novel clade-associated features. mSystems 2: e00061-17.
  22. Beaz-Hidalgo R, Hossain MJ, Liles MR, Figueras MJ. 2015. Strategies to avoid wrongly labelled genomes using as example the detected wrong taxonomic affiliation for Aeromonas genomes in the genbank database. PLoS One 10: e0115813. https://doi.org/10.1371/journal.pone.0115813
  23. Tran PN, Savka MA, Gan HM. 2017. In-silico taxonomic classification of 373 genomes reveals species misidentification and new genospecies within the genus Pseudomonas. Front. Microbiol. 8: 1296. https://doi.org/10.3389/fmicb.2017.01296
  24. Laing CR, Whiteside MD, Gannon VPJ. 2017. Pan-genome analyses of the species Salmonella enterica, and identification of genomic markers predictive for species, subspecies, and serovar. Front. Microbiol. 8: 1345. https://doi.org/10.3389/fmicb.2017.01345
  25. Velsko IM, Perez MS, Richards VP. 2019. Resolving phylogenetic relationships for Streptococcus mitis and Streptococcus oralis through core- and pan-genome analyses. Genome Biol. Evol. 11: 1077-1087. https://doi.org/10.1093/gbe/evz049
  26. Lu W, Kong W, Yang P, Kong J. 2015. A one-step PCR-based method for specific identification of 10 common lactic acid bacteria and Bifidobacterium in fermented milk. Int. Dairy J. 41: 7-12. https://doi.org/10.1016/j.idairyj.2014.08.020
  27. Stachelska MA. 2017. Identification of Lactobacillus delbrueckii and Streptococcus thermophilus strains present in artisanal raw cow milk cheese using real-Time PCR and classic plate count methods. Polish. J. Microbiol. 66: 491-499. https://doi.org/10.5604/01.3001.0010.7041
  28. Kim E, Kim HJ, Yang SM, Kim CG, Choo DW, Kim HY. 2019. Rapid identification of Staphylococcus species isolated from food samples by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Microbiol. Biotechnol. 29: 548-557. https://doi.org/10.4014/jmb.1901.01046
  29. Ha M, Jo HJ, Choi EK, Kim Y, Kim J, Cho HJ. 2019. Reliable identification of Bacillus cereus group species using low mass biomarkers by MALDI-TOF MS. J. Microbiol. Biotechnol. 29: 887-896. https://doi.org/10.4014/jmb.1903.03033
  30. Huang CH, Huang L. 2018. Rapid species- and subspecies-specific level classification and identification of Lactobacillus casei group members using MALDI Biotyper combined with ClinProTools. J. Dairy Sci. 101: 979-991. https://doi.org/10.3168/jds.2017-13642
  31. Broeders S, Huber I, Grohmann L, Berben G, Taverniers I, Mazzara M, et al. 2014. Guidelines for validation of qualitative real-time PCR methods. Trends Food Sci. Technol. 37: 115-126. https://doi.org/10.1016/j.tifs.2014.03.008