DOI QR코드

DOI QR Code

Arabinoxylo- and Arabino-Oligosaccharides-Specific α-ʟ-Arabinofuranosidase GH51 Isozymes from the Amylolytic Yeast Saccharomycopsis fibuligera

  • Park, Tae Hyeon (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University) ;
  • Choi, Chang-Yun (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University) ;
  • Kim, Hyeon Jin (Department of Life Science, Chung-Ang University) ;
  • Song, Jeong-Rok (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University) ;
  • Park, Damee (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University) ;
  • Kang, Hyun Ah (Department of Life Science, Chung-Ang University) ;
  • Kim, Tae-Jip (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University)
  • Received : 2020.12.20
  • Accepted : 2020.12.30
  • Published : 2021.02.28

Abstract

Two genes encoding probable α-ʟ-arabinofuranosidase (E.C. 3.2.1.55) isozymes (ABFs) with 92.3% amino acid sequence identity, ABF51A and ABF51B, were found from chromosomes 3 and 5 of Saccharomycopsis fibuligera KJJ81, an amylolytic yeast isolated from Korean wheat-based nuruk, respectively. Each open reading frame consists of 1,551 nucleotides and encodes a protein of 517 amino acids with the molecular mass of approximately 59 kDa. These isozymes share approximately 49% amino acid sequence identity with eukaryotic ABFs from filamentous fungi. The corresponding genes were cloned, functionally expressed, and purified from Escherichia coli. SfABF51A and SfABF51B showed the highest activities on p-nitrophenyl arabinofuranoside at 40~45℃ and pH 7.0 in sodium phosphate buffer and at 50℃ and pH 6.0 in sodium acetate buffer, respectively. These exoacting enzymes belonging to the glycoside hydrolase (GH) family 51 could hydrolyze arabinoxylo-oligosaccharides (AXOS) and arabino-oligosaccharides (AOS) to produce only ʟ-arabinose, whereas they could hardly degrade any polymeric substrates including arabinans and arabinoxylans. The detailed product analyses revealed that both SfABF51 isozymes can catalyze the versatile hydrolysis of α-(1,2)- and α-(1,3)-ʟ-arabinofuranosidic linkages of AXOS, and α-(1,2)-, α-(1,3)-, and α-(1,5)-linkages of linear and branched AOS. On the contrary, they have much lower activity against the α-(1,2)- and α-(1,3)-double-substituted substrates than the single-substituted ones. These hydrolases could potentially play important roles in the degradation and utilization of hemicellulosic biomass by S. fibuligera.

Keywords

References

  1. Saha BC. 2003. Hemicelluose bioconversion. J. Ind. Microbiol. Biotechnol. 30: 279-291. https://doi.org/10.1007/s10295-003-0049-x
  2. Hizukuri S. 1999. Nutritional and physiological functions and uses of L-arabinose. J. Appl. Glycosci. 46: 159-165. https://doi.org/10.5458/jag.46.159
  3. Seri K, Sanai K, Matsuo N, Kawakubo K, Xue C, Inoue S. 1996. ʟ-Arabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. Metabolism 45: 1368-1374. https://doi.org/10.1016/S0026-0495(96)90117-1
  4. Moon JS, Shin SY, Choi HS, Joo W, Cho SK, Li L, et al. 2015. In vitro digestion and fermentation properties of linear sugar-beet arabinan and its oligosaccharides. Carbohydr. Polym. 131: 50-56. https://doi.org/10.1016/j.carbpol.2015.05.022
  5. Numan MT, Bhosle NB. 2006. α-ʟ-Arabinofuranosidases: the potential applications in biotechnology. J. Ind. Microbiol. Biotechnol. 33: 247-260. https://doi.org/10.1007/s10295-005-0072-1
  6. Poria V, Saini JK, Singh S, Nain L, Kuhad RC. 2020. Arabinofuranosidases: Characteristics, microbial production, and potential in waste valorization and industrial applications. Bioresour. Technol. 304: 123019. https://doi.org/10.1016/j.biortech.2020.123019
  7. Lim YR, Yeom SJ, Kim YS, Oh DK. 2011. Synergistic production of L-arabinose from arabinan by the combined use of thermostable endo- and exo-arabinanases from Caldicellulosiruptor saccharolyticus. Bioresour. Technol. 102: 4277-4280. https://doi.org/10.1016/j.biortech.2010.12.039
  8. Park JM, Jang MU, Oh GW, Lee EH, Kang JH, Song YB, et al. 2015. Synergistic action modes of arabinan degradation by exo- and endo-arabinosyl hydrolases. J. Microbiol. Biotechnol. 25: 227-233. https://doi.org/10.4014/jmb.1411.11055
  9. Seiboth B, Metz B. 2011. Fungal arabinan and ʟ-arabinose metabolism. Appl. Microbiol. Biotechnol. 89: 1665-1673. https://doi.org/10.1007/s00253-010-3071-8
  10. Sa-Nogueira I, Nogueira TV, Soares S, de Lencastre H. 1997. The Bacillus subtilis ʟ-arabinose (ara) operon: nucleotide sequence, genetic organization and expression. Microbiology 143: 957-969. https://doi.org/10.1099/00221287-143-3-957
  11. Inacio JM, Correia IL, de Sa-Nogueira I. 2008. Two distinct arabinofuranosidases contribute to arabino-oligosaccharide degradation in Bacillus subtilis. Microbiology 154: 2719-2729. https://doi.org/10.1099/mic.0.2008/018978-0
  12. Shulami S, Raz-Pasteur A, Tabachnikov O, Gilead-Gropper S, Shner I, Shoham Y. 2011. The ʟ-arabinan utilization system of Geobacillus stearothermophilus. J. Bacteriol. 193: 2838-2850. https://doi.org/10.1128/JB.00222-11
  13. Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H. 2009. Identification and functional analysis of the gene cluster for ʟ-arabinose utilization in Corynebacterium glutamicum. Appl. Environ. Microbiol. 75: 3419-3429. https://doi.org/10.1128/AEM.02912-08
  14. Shinozaki A, Hosokawa S, Nakazawa M, Ueda M, Sakamoto T. 2015. Identification and characterization of three Penicillium chrysogenum α-ʟ-arabinofuranosidases (PcABF43B, PcABF51C, and AFQ1) with different specificities toward arabino-oligosaccharides. Enzyme Microb. Technol. 73-74: 65-71. https://doi.org/10.1016/j.enzmictec.2015.04.003
  15. Bauer S, Vasu P, Persson S, Mort AJ, Somerville CR. 2006. Development and application of a suite of polysaccharide-degrading enzymes for analyzing plant cell walls. Proc. Natl. Acad. Sci. USA 103: 11417-11422. https://doi.org/10.1073/pnas.0604632103
  16. Pouvreau L, Joosten R, Hinz SW, Gruppen H, Schols HA. 2011. Chrysosporium lucknowense C1 arabinofuranosidases are selective in releasing arabinose from either single or double substituted xylose residues in arabinoxylans. Enzyme Microb. Technol. 48: 397-403. https://doi.org/10.1016/j.enzmictec.2011.01.004
  17. Ohta K, Fujii S, Higashida C. 2013. Characterization of a glycoside hydrolase family-51 α-ʟ-arabinofuranosidase gene from Aureobasidium pullulans ATCC 20524 and its encoded product. J. Biosci. Bioeng. 116: 287-292. https://doi.org/10.1016/j.jbiosc.2013.03.009
  18. Uesaka E, Sato M, Raiju M, Kaji A. 1978. α-ʟ-Arabinofuranosidase from Rhodotorula flava. J. Bacteriol. 133: 1073-1077. https://doi.org/10.1128/jb.133.3.1073-1077.1978
  19. Yanai T, Sato M. 2000. Purification and characterization of a novel α-ʟ-arabinofuranosidase from Pichia capsulata X91. Biosci. Biotechnol. Biochem. 64: 1181-1188. https://doi.org/10.1271/bbb.64.1181
  20. Fonseca C, Romao R, Rodrigues de Sousa H, Hahn-Hagerdal B, Spencer-Martins I. 2007. ʟ-Arabinose transport and catabolism in yeast. FEBS J. 274: 3589-3600. https://doi.org/10.1111/j.1742-4658.2007.05892.x
  21. Choo JH, Hong CP, Lim JY, Seo JA, Kim YS, Lee DW, et al. 2016. Whole-genome de novo sequencing, combined with RNA-Seq analysis, reveals unique genome and physiological features of the amylolytic yeast Saccharomycopsis fibuligera and its interspecies hybrid. Biotechnol. Biofuels 9: 246. https://doi.org/10.1186/s13068-016-0653-4
  22. Chi Z, Chi Z, Liu G, Wang F, Ju L, Zhang T. 2009. Saccharomycopsis fibuligera and its applications in biotechnology. Biotechnol. Adv. 27: 423-431. https://doi.org/10.1016/j.biotechadv.2009.03.003
  23. Lee DW, Hong CP, Kang HA. 2019. An effective and rapid method for RNA preparation from non-conventional yeast species. Anal. Biochem. 586: 113408. https://doi.org/10.1016/j.ab.2019.113408
  24. Dumbrepatil A, Park JM, Jung TY, Song HN, Jang MU, Han NS, et al. 2012. Structural analysis of α-ʟ-arabinofuranosidase from Thermotoga maritima reveals characteristics for thermostability and substrate specificity. J. Microbiol. Biotechnol. 22: 1724-1730. https://doi.org/10.4014/jmb.1208.08043
  25. Oh GW, Kang Y, Choi CY, Kang SY, Kang JH, Lee ML, et al. 2019. Detailed mode of action of arabinan-debranching α-ʟ-arabinofuranosidase GH51 from Bacillus velezensis. J. Microbiol. Biotechnol. 29: 37-43. https://doi.org/10.4014/jmb.1807.11035
  26. Beylot MH, McKie VA, Voragen AG, Doeswijk-Voragen CH, Gilbert HJ. 2001. The Pseudomonas cellulosa glycoside hydrolase family 51 arabinofuranosidase exhibits wide substrate specificity. Biochem. J. 358: 607-614. https://doi.org/10.1042/bj3580607
  27. Debeche T, Cummings N, Connerton I, Debeire P, O'Donohue MJ. 2000. Genetic and biochemical characterization of a highly thermostable α-ʟ-arabinofuranosidase from Thermobacillus xylanilyticus. Appl. Environ. Microbiol. 66: 1734-1736. https://doi.org/10.1128/AEM.66.4.1734-1736.2000
  28. Michlmayr H, Schümann C, Kulbe KD, del Hierro AM. 2011. Heterologously expressed family 51 α-ʟ-arabinofuranosidases from Oenococcus oeni and Lactobacillus brevis. Appl. Environ. Microbiol. 77: 1528-1531. https://doi.org/10.1128/AEM.01385-10
  29. Margolles A, de los Reyes-Gavilan CG. 2003. Purification and functional characterization of a novel α-ʟ-arabinofuranosidase from Bifidobacterium longum B667. Appl. Environ. Microbiol. 69: 5096-5103. https://doi.org/10.1128/AEM.69.9.5096-5103.2003
  30. Cartmell A, McKee LS, Peña MJ, Larsbrink J, Brumer H, Kaneko S et al. 2011. The structure and function of an arabinan-specific α-1,2-arabinofuranosidase identified from screening the activities of bacterial GH43 glycoside hydrolases. J. Biol. Chem. 286: 15483-15495. https://doi.org/10.1074/jbc.M110.215962
  31. Michlmayr H, Hell J, Lorenz C, Bohmdorfer S, Rosenau T, Kneifel W. 2013. Arabinoxylan oligosaccharide hydrolysis by family 43 and 51 glycosidases from Lactobacillus brevis DSM 20054. Appl. Environ. Microbiol. 79: 6747-6754. https://doi.org/10.1128/AEM.02130-13
  32. Ichinose H, Yoshida M, Fujimoto Z, Kaneko S. 2008. Characterization of a modular enzyme of exo-1,5-α-ʟ-arabinofuranosidase and arabinan binding module from Streptomyces avermitilis NBRC14893. Appl. Microbiol. Biotechnol. 80: 399-408. https://doi.org/10.1007/s00253-008-1551-x
  33. Linares-Pasten JA, Falck P, Albasri K, Kjellstrom S, Adlercreutz P, Logan DT et al. 2017. Three-dimensional structures and functional studies of two GH43 arabinofuranosidases from Weissella sp. strain 142 and Lactobacillus brevis. FEBS J. 284: 2019-2036. https://doi.org/10.1111/febs.14101
  34. Paes G, Skov LK, O'Donohue MJ, Remond C, Kastrup JS, Gajhede M et al. 2008. The structure of the complex between a branched pentasaccharide and Thermobacillus xylanilyticus GH-51 arabinofuranosidase reveals xylan-binding determinants and induced fit. Biochemistry 47: 7441-7451. https://doi.org/10.1021/bi800424e
  35. Zietsman AJ, de Klerk D, van Rensburg P. 2011. Coexpression of α-ʟ-arabinofuranosidase and β-glucosidase in Saccharomyces cerevisiae. FEMS Yeast Res. 11: 88-103. https://doi.org/10.1111/j.1567-1364.2010.00694.x