DOI QR코드

DOI QR Code

Function and Molecular Ecology Significance of Two Catechol-Degrading Gene Clusters in Pseudomonas putida ND6

  • Shi, Sanyuan (Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology) ;
  • Yang, Liu (Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology) ;
  • Yang, Chen (Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology) ;
  • Li, Shanshan (Department of Environmental Science and Engineering, Xi'an Jiaotong University) ;
  • Zhao, Hong (Tianjin Entry-Exit Inspection and Quarantine Bureau) ;
  • Ren, Lu (Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology) ;
  • Wang, Xiaokang (Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology) ;
  • Lu, Fuping (Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology) ;
  • Li, Ying (China Animal Disease Control Center) ;
  • Zhao, Huabing (Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology)
  • Received : 2020.09.16
  • Accepted : 2020.12.08
  • Published : 2021.02.28

Abstract

Many bacteria metabolize aromatic compounds via catechol as a catabolic intermediate, and possess multiple genes or clusters encoding catechol-cleavage enzymes. The presence of multiple isozyme-encoding genes is a widespread phenomenon that seems to give the carrying strains a selective advantage in the natural environment over those with only a single copy. In the naphthalene-degrading strain Pseudomonas putida ND6, catechol can be converted into intermediates of the tricarboxylic acid cycle via either the ortho- or meta-cleavage pathways. In this study, we demonstrated that the catechol ortho-cleavage pathway genes (catBICIAI and catBIICIIAII) on the chromosome play an important role. The catI and catII operons are co-transcribed, whereas catAI and catAII are under independent transcriptional regulation. We examined the binding of regulatory proteins to promoters. In the presence of cis-cis-muconate, a well-studied inducer of the cat gene cluster, CatRI and CatRII occupy an additional downstream site, designated as the activation binding site. Notably, CatRI binds to both the catI and catII promoters with high affinity, while CatRII binds weakly. This is likely caused by a T to G mutation in the G/T-N11-A motif. Specifically, we found that CatRI and CatRII regulate catBICIAI and catBIICIIAII in a cooperative manner, which provides new insights into naphthalene degradation.

Keywords

References

  1. Linger JG, Vardon DR, Guarnieri MT, Karp EM, Hunsinger GB, Franden MA, et al. 2014. Lignin valorization through integrated biological funneling and chemical catalysis. Proc. Natl. Acad. Sci. USA 111: 12013-12018. https://doi.org/10.1073/pnas.1410657111
  2. Mallick S. 2019. Biodegradation of acenaphthene by Sphingobacterium sp. strain RTSB involving trans-3-carboxy-2-hydroxybenzylidenepyruvic acid as a metabolite. Chemosphere 219: 748-755. https://doi.org/10.1016/j.chemosphere.2018.12.046
  3. Setlhare B, Kumar A, Mokoena MP, Olaniran AO. 2018. Catechol 1,2-Dioxygenase is an analogue of Homogentisate 1,2-Dioxygenase in Pseudomonas chlororaphis Strain UFB2. Int. J. Mol. Sci. 20: 61. https://doi.org/10.3390/ijms20010061
  4. Singh SN, Kumari B, Upadhyay SK, Mishra S, Kumar D. 2013. Bacterial degradation of pyrene in minimal salt medium mediated by catechol dioxygenases: enzyme purification and molecular size determination. Bioresour. Technol. 133: 293-300. https://doi.org/10.1016/j.biortech.2013.01.068
  5. Wackett LP. 2003. Pseudomonas putida a versatile biocatalyst. Nat. Biotechnol. 21: 136-138. https://doi.org/10.1038/nbt0203-136
  6. Jimenez JI, Perez-Pantoja D, Chavarria M, Diaz E, de Lorenzo V. 2014. A second chromosomal copy of the catA gene endows Pseudomonas putida mt-2 with an enzymatic safety valve for excess of catechol. Environ. Microbiol. 16: 1767-1778. https://doi.org/10.1111/1462-2920.12361
  7. Caposio P, Pessione E, Giuffrida G, Conti A, Landolfo S, Giunta C, et al. 2002. Cloning and characterization of two catechol 1,2-dioxygenase genes from Acinetobacter radioresistens S13. Res. Microbiol. 153: 69-74. https://doi.org/10.1016/S0923-2508(01)01290-6
  8. Harwood CS, Parales RE. 1996. The beta-ketoadipate pathway and the biology of self-identity. 1996. Annu. Rev. Microbiol. 50: 553-590. https://doi.org/10.1146/annurev.micro.50.1.553
  9. Tumen-Velasquez MP, Laniohan NS, Momany C, Neidle EL. 2019. Engineering CatM, a LysR-type transcriptional regulator, to respond synergistically to two effectors. Genes (Basel). 10: 421. https://doi.org/10.3390/genes10060421
  10. Parsek MR, Shinabarger DL, Rothmel RK, Chakrabarty AM. 1992. Roles of CatR and cis,cis-muconate in activation of the catBC operon, which is involved in benzoate degradation in Pseudomonas putida. J. Bacteriol. 174: 7798-7806. https://doi.org/10.1128/jb.174.23.7798-7806.1992
  11. Chugani SA PM, Hershberger CD, Murakami K, Ishihama A, Chakrabarty AM. 1997. Activation of the catBCA promoter: probing the interaction of CatR and RNA polymerase through in vitro transcription. J. Bacteriol. 179: 2221-2227. https://doi.org/10.1128/jb.179.7.2221-2227.1997
  12. Tover A, Ojangu EL, Kivisaar M. 2001. Growth medium composition-determined regulatory mechanisms are superimposed on CatR-mediated transcription from the pheBA and catBCA promoters in Pseudomonas putida. Microbiology 147: 2149-2156. https://doi.org/10.1099/00221287-147-8-2149
  13. Rothmel RK, Aldrich TL, Houghton JE, Coco WM, Ornston LN, Chakrabarty AM. 1990. Nucleotide sequencing and characterization of Pseudomonas putida catR: a positive regulator of the catBC operon is a member of the LysR family. J. Bacteriol. 172: 922-931. https://doi.org/10.1128/jb.172.2.922-931.1990
  14. Kohlstedt M, Starck S, Barton N, Stolzenberger J, Selzer M, Mehlmann K, et al. 2018. From lignin to nylon: cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida. Metab. Eng. 47: 279-293. https://doi.org/10.1016/j.ymben.2018.03.003
  15. Pi H, Helmann JD. 2018. Genome-wide characterization of the fur regulatory network reveals a link between catechol degradation and bacillibactin metabolism in Bacillus subtilis. mBio 9: e01451-18.
  16. Li S, Zhao H, Li Y, Niu S, Cai B. 2012. Complete genome sequence of the naphthalene-degrading Pseudomonas putida strain ND6. J. Bacteriol. 194: 5154-5155. https://doi.org/10.1128/JB.01190-12
  17. Li S, Qin K, Li H, Guo J, Li D, Liu F, et al. 2018. Cloning and characterisation of four catA genes located on the chromosome and large plasmid of Pseudomonas putida ND6. Electronic J. Biotechnol. 34: 83-90. https://doi.org/10.1016/j.ejbt.2018.06.001
  18. Kim SI, Leem SH, Choi JS, Chung YH, Kim S, Park YM, et al. 1997. Cloning and characterization of two catA genes in Acinetobacter lwoffii K24. J. Bacteriol. 179: 5226-5231. https://doi.org/10.1128/jb.179.16.5226-5231.1997
  19. Murakami S, Takashima A, Takemoto J, Takenaka S, Shinke R, Aoki K. 1999. Cloning and sequence analysis of two catechol-degrading gene clusters from the aniline-assimilating bacterium Frateuria species ANA-18. Gene 226: 189-198. https://doi.org/10.1016/S0378-1119(98)00560-5
  20. Suzuki K, Ichimura A, Ogawa N, Hasebe A, Miyashita K. 2002. Differential expression of two catechol 1,2-dioxygenases in Burkholderia sp. strain TH2. J. Bacteriol. 184: 5714-5722. https://doi.org/10.1128/JB.184.20.5714-5722.2002
  21. Tian M, Du D, Zhou W, Zeng X, Cheng G. 2017. Phenol degradation and genotypic analysis of dioxygenase genes in bacteria isolated from sediments. Braz. J. Microbiol. 48: 305-313. https://doi.org/10.1016/j.bjm.2016.12.002
  22. Yoon YH, Yun SH, Park SH, Seol SY, Leem SH, Kim SI. 2007. Characterization of a new catechol branch of the beta-ketoadipate pathway induced for benzoate degradation in Acinetobacter lwoffii K24. Biochem. Biophys. Res. Commun. 360: 513-519. https://doi.org/10.1016/j.bbrc.2007.05.132
  23. Takashima A, Murakami S, Takenaka S, Aoki K. 2001. Regulation by two CatR proteins that differ in binding affinity to catB promoters expressing two cat gene clusters. Biosci. Biotechnol. Biochem. 65: 2146-2153. https://doi.org/10.1271/bbb.65.2146
  24. Ahn IS, Ghiorse WC, Lion LW, Shuler ML. 1998. Growth kinetics of Pseudomonas putida G7 on naphthalene and occurrence of naphthalene toxicity during nutrient deprivation. Biotechnol. Bioeng. 59: 587-594. https://doi.org/10.1002/(SICI)1097-0290(19980905)59:5<587::AID-BIT9>3.0.CO;2-6
  25. Sota M, Yano H, Ono A, Miyazaki R, Ishii H, Genka H, et al. 2006. Genomic and functional analysis of the IncP-9 naphthalenecatabolic plasmid NAH7 and its transposon Tn4655 suggests catabolic gene spread by a tyrosine recombinase. J. Bacteriol. 188: 4057-4067. https://doi.org/10.1128/JB.00185-06
  26. Dennis JJ, Zylstra GJ. 2004. Complete sequence and genetic organization of pDTG1, the 83 kilobase naphthalene degradation plasmid from Pseudomonas putida strain NCIB 9816-4. J. Mol. Biol. 341: 753-768. https://doi.org/10.1016/j.jmb.2004.06.034
  27. Li SS, Hu X, Zhao H, Li YX, Zhang L, Gong LJ, et al. 2015. Quantitative analysis of cellular proteome alterations of Pseudomonas putida to naphthalene-induced stress. Biotechnol. Lett. 37: 1645-1654. https://doi.org/10.1007/s10529-015-1828-y
  28. Park W, Jeon CO, Hohnstock-Ashe AM, Winans SC, Zylstra GJ, Madsen EL. 2003. Identification and characterization of the conjugal transfer region of the pCg1 plasmid from naphthalene-degrading Pseudomonas putida Cg1. Appl. Environ. Microbiol. 69: 3263-3271. https://doi.org/10.1128/AEM.69.6.3263-3271.2003
  29. Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP. 1998. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212: 77-86. https://doi.org/10.1016/S0378-1119(98)00130-9
  30. Totten PA, Lory S. 1990. Characterization of the type a flagellin gene from Pseudomonas aeruginosa PAK. J. Bacteriol. 172: 7188-7199. https://doi.org/10.1128/jb.172.12.7188-7199.1990
  31. Green M R, Sambrook J. Molecular Cloning: A Laboratory Manual. 4th ed. Cold Spring Harbor Laboratory, 2012.
  32. Li S, Li X, Zhao H, Cai B. 2011. Physiological role of the novel salicylaldehyde dehydrogenase NahV in mineralization of naphthalene by Pseudomonas putida ND6. Microbiol. Res. 166: 643-653. https://doi.org/10.1016/j.micres.2011.01.003
  33. Paulin MM, Novinscak A, St-Arnaud M, Goyer C, DeCoste NJ, Prive JP, et al. 2009. Transcriptional activity of antifungal metabolite-encoding genes phlD and hcnBC in Pseudomonas spp. using RT-qPCR. FEMS Microbiol. Ecol. 68: 212-222. https://doi.org/10.1111/j.1574-6941.2009.00669.x
  34. Fekete RA, Miller MJ, Chattoraj DK. 2003. Fluorescently labeled oligonucleotide extension: a rapid and quantitative protocol for primer extension. Biotechniques 35: 90-94, 97-98. https://doi.org/10.2144/03351rr01
  35. Wang Y, Cen XF, Zhao GP, Wang J. 2012. Characterization of a new GlnR binding box in the promoter of amtB in Streptomyces coelicolor inferred a PhoP/GlnR competitive binding mechanism for transcriptional regulation of amtB. J. Bacteriol. 194: 5237-5244. https://doi.org/10.1128/JB.00989-12
  36. Chugani SA PM, Chakrabarty AM. 1998. Transcriptional repression mediated by LysR-type regulator CatR bound at multiple binding sites. J. Bacteriol. 172: 922-931. https://doi.org/10.1128/jb.172.2.922-931.1990
  37. Parsek MR, Ye RW, Pun P, Chakrabarty AM. 1994. Critical nucleotides in the interaction of a LysR-type regulator with its target promoter region catBC promoter activation by CatR. J. Biol. Chem. 269: 11279-11284. https://doi.org/10.1016/S0021-9258(19)78122-8
  38. Goethals K, Van Montagu M, Holsters M. 1992. Conserved motifs in a divergent nod box of Arhizobium caulinodans ORS571 reveal a common structure in promoters regulated by LysR-type proteins. Proc. Natl. Acad. Sci. USA 89:1646-1650. https://doi.org/10.1073/pnas.89.5.1646
  39. Browning DF, Busby SJ. 2016. Local and global regulation of transcription initiation in bacteria. Nat. Rev. Microbiol. 14: 638-650. https://doi.org/10.1038/nrmicro.2016.103
  40. Nojiri H, Maeda K, Sekiguchi H, Urata M, Shintani M, Yoshida T, et al. 2002. Organization and transcriptional characterization of catechol degradation genes involved in carbazole degradation by Pseudomonas resinovorans strain CA10. Biosci. Biotechnol. Biochem. 66: 897-901. https://doi.org/10.1271/bbb.66.897
  41. Kim SI, Ha KS, Leem SH. 1999. Differential organization and transcription of the cat2 gene cluster in aniline-assimilating Acinetobacter lwoffii K24. J. Biosci. Bioeng. 88: 250-257. https://doi.org/10.1016/S1389-1723(00)80005-5
  42. Vesely M, Knoppova M, Nesvera J, Patek M. 2007. Analysis of catRABC operon for catechol degradation from phenol-degrading Rhodococcus erythropolis. Appl. Microbiol. Biotechnol. 76: 159-168. https://doi.org/10.1007/s00253-007-0997-6
  43. Chettri B, Singh AK. 2019. Kinetics of hydrocarbon degradation by a newly isolated heavy metal tolerant bacterium Novosphingobium panipatense P5:ABC. Bioresour. Technol. 294: 122190. https://doi.org/10.1016/j.biortech.2019.122190
  44. Zhao H, Chen D, Li Y, Cai B. 2005. Overexpression, purification and characterization of a new salicylate hydroxylase from naphthalene-degrading Pseudomonas sp. strain ND6. Microbiol. Res. 160: 307-313. https://doi.org/10.1016/j.micres.2005.02.004
  45. Suvorova IA, Gelfand MS. 2019. Comparative genomic analysis of the regulation of aromatic metabolism in betaproteobacteria. Front. Microbiol. 10: 642. https://doi.org/10.3389/fmicb.2019.00642
  46. Parsek MR, McFall SM, Shinabarger DL, Chakrabarty AM. 1994. Interaction of two LysR-type regulatory proteins CatR and ClcR with heterologous promoters: functional and evolutionary implications. Proc. Natl. Acad. Sci. USA 91: 12393-12397. https://doi.org/10.1073/pnas.91.26.12393
  47. McFall SM, Chugani SA, Chakrabarty AM. 1998. Transcriptional activation of the catechol and chlorocatechol operons: variations on a theme. Gene 223: 257-267. https://doi.org/10.1016/S0378-1119(98)00366-7