References
- Dalmaso GZL, Ferreira D, Vermelho AB. 2015. Marine extremophiles: a source of hydrolases for biotechnological applications. Mar. Drugs 13: 1925-1965. https://doi.org/10.3390/md13041925
- Hong J-W, Song H-S, Moon Y-M, Hong Y-G, Bhatia SK, Jung H-R, et al. 2019. Polyhydroxybutyrate production in halophilic marine bacteria Vibrio proteolyticus isolated from the Korean peninsula. Bioprocess Biosyst. Eng. 42: 603-610. https://doi.org/10.1007/s00449-018-02066-6
- Gurav R, Bhatia SK, Moon Y-M, Choi T-R, Jung H-R, Yang S-Y, et al. 2019. One-pot exploitation of chitin biomass for simultaneous production of electricity, n-acetylglucosamine and polyhydroxyalkanoates in microbial fuel cell using novel marine bacterium Arenibacter palladensis YHY2. J. Clean. Prod. 209: 324-332. https://doi.org/10.1016/j.jclepro.2018.10.252
- Diken E, Ozer T, Arikan M, Emrence Z, Oner ET, Ustek D, et al. 2015. Genomic analysis reveals the biotechnological and industrial potential of levan producing halophilic extremophile, Halomonas smyrnensis AAD6T. SpringerPlus 4: 393. https://doi.org/10.1186/s40064-015-1184-3
- Dash HR, Mangwani N, Chakraborty J, Kumari S, Das S. 2013. Marine bacteria: potential candidates for enhanced bioremediation. Appl. Microbiol. Biotechnol. 97: 561-571. https://doi.org/10.1007/s00253-012-4584-0
- Wang Y, Song Q, Zhang X-H. 2016. Marine microbiological enzymes: studies with multiple strategies and prospects. Mar. Drugs 14: 171. https://doi.org/10.3390/md14100171
- Bhatia SK, Kim J, Song H-S, Kim HJ, Jeon J-M, Sathiyanarayanan G, et al. 2017. Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01. Bioresour. Technol. 233: 99-109. https://doi.org/10.1016/j.biortech.2017.02.061
- Aston JE, Peyton BM. 2007. Response of Halomonas campisalis to saline stress: changes in growth kinetics, compatible solute production and membrane phospholipid fatty acid composition. FEMS Microbiol. Lett. 274: 196-203. https://doi.org/10.1111/j.1574-6968.2007.00851.x
- Vargas C, Canovas D, Calderon M, Moron M, Carrasco R, Ventosa A, et al. 2000. Osmoprotection by compatible solutes accumulation in the moderately halophilic bacterium Halomonas elongata DSM 3043. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 126: s151.
- Park Y-L, Bhatia SK, Gurav R, Choi T-R, Kim HJ, Song H-S, et al. 2020. Fructose based hyper production of poly-3-hydroxybutyrate from Halomonas sp. YLGW01 and impact of carbon sources on bacteria morphologies. Int. J. Biol. Macromol. 154: 929-936. https://doi.org/10.1016/j.ijbiomac.2020.03.129
- Johnson J, Sudheer PD, Yang Y-H, Kim Y-G, Choi K-Y. 2017. Hydrolytic activities of hydrolase enzymes from halophilic microorganisms. Biotechnol. Bioprocess Eng. 22: 450-461. https://doi.org/10.1007/s12257-017-0113-4
- Park Y-L, Han Y-H, Song H-S, Park J-Y, Bhatia SK, Gurav R, et al. 2020. Effects of osmolytes on salt resistance of Halomonas socia CKY01 and identification of osmolytes-related genes by genome sequencing. J. Biotechnol. 322: 21-28. https://doi.org/10.1016/j.jbiotec.2020.07.006
- von Graevenitz A, Bowman J, Del Notaro C, Ritzler M. 2000. Human infection with Halomonas venusta following fish bite. J. Clin. Microbiol. 38: 3123-3124. https://doi.org/10.1128/JCM.38.8.3123-3124.2000
- Stevens DA, Hamilton JR, Johnson N, Kim KK, Lee J-S. 2009. Halomonas, a newly recognized human pathogen causing infections and contamination in a dialysis center: three new species. Medicine 88: 244-249. https://doi.org/10.1097/MD.0b013e3181aede29
- Rawat S. 2015. Food Spoilage: Microorganisms and their prevention. Asian J. Plant Sci. Res. 5: 47-56.
- Yang J, Zeng ZH, Yang MJ, Cheng ZX, Peng XX, Li H. 2018. NaCl promotes antibiotic resistance by reducing redox states in Vibrio alginolyticus. Environ. Microbiol. 20: 4022-4036. https://doi.org/10.1111/1462-2920.14443
- Hood MI, Jacobs AC, Sayood K, Dunman PM, Skaar EP. 2010. Acinetobacter baumannii increases tolerance to antibiotics in response to monovalent cations. Antimicrob. Agents Chemother. 54: 1029-1041. https://doi.org/10.1128/aac.00963-09
- Harrison JP, Angel R, Cockell CS. 2017. Astrobiology as a framework for investigating antibiotic susceptibility: a study of Halomonas hydrothermalis. J. R Soc. Interface 14: 20160942. https://doi.org/10.1098/rsif.2016.0942
- Zhu M, Dai X. 2018. High salt cross-protects Escherichia coli from antibiotic treatment through increasing efflux pump expression. mSphere. 3: e00095-18.
- Benomar S, Evans KC, Unckless RL, Chandler JR. 2019. Efflux pumps in Chromobacterium species increase antibiotic resistance and promote survival in a coculture competition model. Appl. Environ. Microbiol. 85: e00908-19.
- Vieira A, Ramesh A, Seddon AM, Karlyshev AV. 2017. CmeABC multidrug efflux pump contributes to antibiotic resistance and promotes Campylobacterjejuni survival and multiplication in Acanthamoeba polyphaga. Appl. Environ. Microbiol. 83: e01600-17.
- Bhatia SK, Lee B-R, Sathiyanarayanan G, Song H-S, Kim J, Jeon J-M, et al. 2016. Medium engineering for enhanced production of undecylprodigiosin antibiotic in Streptomyces coelicolor using oil palm biomass hydrolysate as a carbon source. Bioresour. Technol. 217: 141-149. https://doi.org/10.1016/j.biortech.2016.02.055
- Phylactides M. 1997. Molecular biology series 3. Tools of molecular biology: gene cloning. Br. J. Hosp. Med. 57: 49-50.
- Kim J, Seo H-M, Bhatia SK, Song H-S, Kim J-H, Jeon J-M, et al. 2017. Production of itaconate by whole-cell bioconversion of citrate mediated by expression of multiple cis-aconitate decarboxylase (cadA) genes in Escherichia coli. Sci. Rep. 7: 39768. https://doi.org/10.1038/srep39768
- Moon Y-M, Gurav R, Kim J, Hong Y-G, Bhatia SK, Jung H-R, et al. 2018. Whole-cell immobilization of engineered Escherichia coli JY001 with barium-alginate for itaconic acid production. Biotechnol. Bioprocess Eng. 23: 442-447. https://doi.org/10.1007/s12257-018-0170-3
- Jorgensen JH, Turnidge JD. 2015. Susceptibility test methods: dilution and disk diffusion methods, pp. 1253-1273. Manual of Clinical Microbiology, 11th Edition, Ed. American Society of Microbiology
- Sleator RD, Hill C. 2002. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol. Rev. 26: 49-71. https://doi.org/10.1016/S0168-6445(01)00071-7
- Leon MJ, Hoffmann T, Sanchez-Porro C, Heider J, Ventosa A, Bremer E. 2018. Compatible solute synthesis and import by the moderate halophile Spiribacter salinus: Physiology and genomics. Front. Microbiol. 9: 108. https://doi.org/10.3389/fmicb.2018.00108
- Cummings SP, Gilmour DJ. 1995. The effect of NaCl on the growth of a Halomonas species: accumulation and utilization of compatible solutes. Microbiology 141: 1413-1418. https://doi.org/10.1099/13500872-141-6-1413
- Robert H, Le Marrec C, Blanco C, Jebbar M. 2000. Glycine betaine, carnitine, and choline enhance salinity tolerance and prevent the accumulation of sodium to a level inhibiting growth of Tetragenococcus halophila. Appl. Environ. Microbiol. 66: 509-517. https://doi.org/10.1128/AEM.66.2.509-517.2000
- Kustos T, Kustos I, Kilar F, Rappai G, Kocsis B. 2003. Effect of antibiotics on cell surface hydrophobicity of bacteria causing orthopedic wound infections. Chemotherapy 49: 237-242. https://doi.org/10.1159/000072447
- Hart DJ, Vreeland RH. 1988. Changes in the hydrophobic-hydrophilic cell surface character of Halomonas elongata in response to NaCl. J. Bacteriol. 170: 132-135. https://doi.org/10.1128/jb.170.1.132-135.1988
- Wilke MS, Lovering AL, Strynadka NC. 2005. β-Lactam antibiotic resistance: a current structural perspective. Curr. Opin. Microbiol. 8: 525-533. https://doi.org/10.1016/j.mib.2005.08.016
- Sykes R, Matthew M. 1976. The β-lactamases of gram-negative bacteria and their role in resistance to β-lactam antibiotics. J. Antimicrob. Chemother. 2: 115-157. https://doi.org/10.1093/jac/2.2.115
- Davies J, Wright GD. 1997. Bacterial resistance to aminoglycoside antibiotics. Trends Microbiol. 5: 234-240. https://doi.org/10.1016/S0966-842X(97)01033-0
- Delcour AH. 2009. Outer membrane permeability and antibiotic resistance. BBA-Proteins Proteom. 1794: 808-816. https://doi.org/10.1016/j.bbapap.2008.11.005
- Mingeot-Leclercq M-P, Decout J-L. 2016. Bacterial lipid membranes as promising targets to fight antimicrobial resistance, molecular foundations and illustration through the renewal of aminoglycoside antibiotics and emergence of amphiphilic aminoglycosides. Med. Chem. Commun. 7: 586-611. https://doi.org/10.1039/C5MD00503E
- Hong Y-G, Moon Y-M, Hong J-W, No S-Y, Choi T-R, Jung H-R, et al. 2018. Production of glutaric acid from 5-aminovaleric acid using Escherichia coli whole cell bio-catalyst overexpressing GabTD from Bacillus subtilis. Enzyme Microb. Technol. 118: 57-65. https://doi.org/10.1016/j.enzmictec.2018.07.002