DOI QR코드

DOI QR Code

RF-마그네트론 스퍼터링으로 증착된 산화주석 전자수송층의 광학적 및 전기적 특성에 대한 증착 전력의 영향

Effect of Sputtering Power on Optical and Electrical Properties of SnOx Electron Transport Layer Deposited by RF-magnetron Sputtering

  • 황지성 (신소재공학과, 고려대학교) ;
  • 이원규 (신소재공학과, 고려대학교) ;
  • 황재근 (신소재공학과, 고려대학교) ;
  • 이상원 (신소재공학과, 고려대학교) ;
  • 현지연 (신소재공학과, 고려대학교) ;
  • 이솔희 (신소재공학과, 고려대학교) ;
  • 정석현 (신소재공학과, 고려대학교) ;
  • 강윤묵 (KU-KIST 그린스쿨대학원, 고려대학교) ;
  • 김동환 (신소재공학과, 고려대학교) ;
  • 이해석 (KU-KIST 그린스쿨대학원, 고려대학교)
  • Hwang, Ji Seong (Department of Materials Science and Engineering, Korea University) ;
  • Lee, Wonkyu (Department of Materials Science and Engineering, Korea University) ;
  • Hwang, Jae Keun (Department of Materials Science and Engineering, Korea University) ;
  • Lee, Sang-Won (Department of Materials Science and Engineering, Korea University) ;
  • Hyun, Ji Yeon (Department of Materials Science and Engineering, Korea University) ;
  • Lee, Solhee (Department of Materials Science and Engineering, Korea University) ;
  • Jeong, Seok Hyun (Department of Materials Science and Engineering, Korea University) ;
  • Kang, Yoonmook (KU-KIST Green School, Graduate School of Energy and Environment, Korea University) ;
  • Kim, Donghwan (Department of Materials Science and Engineering, Korea University) ;
  • Lee, Hae-Seok (KU-KIST Green School, Graduate School of Energy and Environment, Korea University)
  • 투고 : 2020.11.25
  • 심사 : 2021.02.17
  • 발행 : 2021.03.31

초록

The properties of the electron transport layer (ETL) have a great effect on perovskite solar cell performance. Depositing conformal SnO2 ETL on bottom textured silicon cells is essential to increase current density in terms of the silicon-perovskite tandem solar cells. In the recent study, the SnO2 electron transport layer deposited by the sputtering method showed an efficiency of 19.8%. Also, an electron transport layer with a sputtered TiO2 electron transport layer in a 4-terminal tandem solar cell has been reported. In this study, we synthesized SnOx ETL with a various sputtering power range of 30-60W by Radio-frequency (RF)-magnetron sputtering. The properties of SnOx thin film were characterized using ellipsometer, UV-vis spectrometer, and IV measurement. With a sputtering power of 50W, the solar cell showed the highest efficiency of 13.3%, because of the highest fill factor by the conductivity of SnOx film.

키워드

참고문헌

  1. "NREL Best Research- Cell Efficiencies," https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200925.pdf (accessed:November, 2020).
  2. Jishi, R. A., Ta, O. B., Sharif, A. A., "Modeling of lead halide perovskites for photovoltaic applications," The Journal of Physical Chemistry C, Vol. 118, No. 49, pp. 28344-28349, 2014. https://doi.org/10.1021/jp5050145
  3. Levine, I., Gupta, S., Brenner, T. M., Azulay, D., Millo, O., Hodes, G., Cahen, D., Balberg, I., "Mobility-Lifetime Products in MAPbI3 Films," The Journal of Physical Chemistry Letters, Vol. 7, No. 24, pp. 5219-5226, 2016. https://doi.org/10.1021/acs.jpclett.6b02287
  4. Chung, T., Kim, S., Bae, S., Lee, S. W., Cho, K., Lee, S., Kang, Y., Lee, H. S., Kim, D., "Characterization of methylammonium lead iodide perovskite solar cells by surface morphology changes," Journal of Nanoscience and Nanotechnology, Vol. 17, No. 7, pp. 4817-4821, 2017. https://doi.org/10.1166/jnn.2017.14278
  5. Wang, Y., Zhang, Y., Zhang, P., Zhang, W., "High intrinsic carrier mobility and photon absorption in the perovskite CH3 NH3PbI3," Physical Chemistry Chemical Physics, Vol. 17, No. 17, pp. 11516-11520, 2015. https://doi.org/10.1039/c5cp00448a
  6. Yang, Y., Yang, M., Li, Z., Crisp, R., Zhu, K., Beard, M. C., "Comparison of recombination dynamics in CH3NH3PbBr3 and CH3NH3PbI3 perovskite films: influence of exciton binding energy," The Journal of Physical Chemistry Letters, Vol. 6, No. 23, pp. 4688-4692, 2015. https://doi.org/10.1021/acs.jpclett.5b02290
  7. Roy, P., Sinha, N. K., Tiwari, S., Khare, A., "A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status," Solar Energy, Vol. 198, pp. 665-688, 2020. https://doi.org/10.1016/j.solener.2020.01.080
  8. Lee, S. W., Kim, S., Bae, S., Cho, K., Chung, T., Mundt, L. E., Lee, S., Park, S., Park, H., Schubert, M. C., Glunz, S. W., "UV degradation and recovery of perovskite solar cells," Scientific Reports, Vol. 6, No. 1, pp. 1-10, 2016. https://doi.org/10.1038/s41598-016-0001-8
  9. Lee, S. W., Kim, S., Bae, S., Cho, K., Chung, T., Hwang, J. K., Song, I., Lee, W., Park, S., Jung, J., Lee, Y. J., Moon, Y. J., Lee, H. S., Kim, D., Mo, C. B., Kang, Y. Chun, J. "Enhanced UV stability of perovskite solar cells with a SrO interlayer," Organic Electronics, Vol. 63, pp. 343-348, 2018. https://doi.org/10.1016/j.orgel.2018.09.019
  10. Jiang, Q., Zhang, X., You, J., "SnO2: A wonderful electron transport layer for Perovskite Solar Cells," Small, Vol. 14, No. 31, 11801154, 2018.
  11. Qiu, L., Liu, Z., Ono, L. K., Jiang, Y., Son, D. Y., Hawash, Z., He, S., Qi, Y., " Scalable fabrication of stable high efficiency perovskite solar cells and modules utilizing room temperature sputtered SnO2 electron transport layer," Advanced Functional Materials, Vol. 29, No. 47, 1806779, 2019. https://doi.org/10.1002/adfm.201806779
  12. Wang, C., Xiao, C., Yu, Y., Zhao, D., Awni, R. A., Grice, C. R., Ghimire, K., Constantinou, I., Liao, W., Cimaroli, A. J., Liu, P., Chen, J., Podraza, N. J., Jiang, C. S., Al-Jassim, MM., Zhao, X., Yan, Y., "Understanding and eliminating hysteresis for highly efficient planar perovskite solar cells," Advanced Energy Materials, Vol. 7, No. 17, 1700414, 2017. https://doi.org/10.1002/aenm.201700414
  13. Lee, S. W., Bae, S., Cho, K., Kim, S., Hwang, J. K., Lee, W., Lee, S., Hyun, J. Y., Lee, S., Choi, S. B., Chun H., Kim, W. M., Kang. Y., Lee, H. S., Kim D., "Sputtering of TiO2 for high-efficiency perovskite and 23.1% perovskite/silicon 4-terminal tandem solar cells," ACS Applied Energy Materials, Vol. 2, No. 9, pp. 6263-6268, 2019. https://doi.org/10.1021/acsaem.9b00801