Evaluation of the usefulness of Bolus, which combines Step Bolus and 3D Bolus

Step Bolus와 3D Bolus를 combine 한 Bolus의 유용성 평가

  • Lee, Chang-Suk (Dept. of Radiation Oncology, Samsung Medical Center) ;
  • Chae, Moon-Ki (Dept. of Radiation Oncology, Samsung Medical Center) ;
  • Park, Byung-Suk (Dept. of Radiation Oncology, Samsung Medical Center) ;
  • Kim, Sung-Jin (Dept. of Radiation Oncology, Samsung Medical Center) ;
  • Joo, Kyoo-Sang (Dept. of Radiation Oncology, Samsung Medical Center) ;
  • Park, Chul-Yong (Dept. of Radiation Oncology, Samsung Medical Center)
  • 이창석 (삼성서울병원 방사선종양학과) ;
  • 채문기 (삼성서울병원 방사선종양학과) ;
  • 박병석 (삼성서울병원 방사선종양학과) ;
  • 김성진 (삼성서울병원 방사선종양학과) ;
  • 주상규 (삼성서울병원 방사선종양학과) ;
  • 박용철 (삼성서울병원 방사선종양학과)
  • Published : 2021.12.31

Abstract

Objectives: Bolus, which combines 3D-bolus and Step-bolus, was produced and its usefulness is evaluated. Materials and Methods: A Bolus was manufactured with a thickness of 10mm and 5mm using a 3D printer (3D printer, USA), and a Step Bolus of 5mm was bonded to a 5mm thick bolus. In order to understand the characteristics of Step bolus and 3D bolus, the differences in relative electron density, HU value, and mass density of the two bolus were investigated. These two Bolus were applied to anthropomorpic phantom to confirm its effectiveness. After all contouring of the phantom, a treatment plan was established using the computed treatment planning system (Eclipse 16.1, Varian medical system, USA). Treatment plan was performed using electron beam 6MeV, nine dose measurement points were designated on the phantom chest, air-gap was measured at that point, and dose evaluation was performed at the same point for each bolus applied using a glass dosimeter (PLD). Results: Bolus, which combines 3D-bolus 5mm and Step-bolus 5mm, was manufactured and evaluated compared with 3D-bolus 1cm. The relative electron density of 3D Bolus was 1.0559 g/cm2 and the step Bolus was 1.0590 g/cm2, which was different by 0.01%, so the relative electron density was almost the same. In the lightweight measurement of air-gap, the combined bolus was reduced to 54.32% for all designated points compared to 3D-bolus. In the dose measurement using a glass dose meter (PLD), the consistency was high in phantom using combined bolus at most points except the slope point. Conclusion: Combined bolus made by combining 3D-bolus and Step-bolus has all the advantages of 3D-bolus and Step-bolus. In addition, by dose inaccuracy due to Air-gap, more improved dose distribution can be shown, and effective radiation therapy can be performed.

목 적: 3D-bolus와 Step-bolus를 결합한 Bolus를 제작하였고, 그 유용성을 평가한다. 대상 및 방법: 3D 프린터(3D printer, USA)를 이용하여 10mm, 5mm두께로 Bolus를 제작하여 5mm두께의 Bolus에는 5mm의 Step Bolus를 결합하였다. Step bolus와 3D Bolus의 특성을 파악하기위해 두 bolus의 상대적전자밀도, HU값 및 질량밀도(mass density)의 차이를 알아보았다. 이 두개의 Bolus를 인체모형 Phantom에 적용하여 그 실효성을 확인해 보았다. 해당 phantom의 모든 윤곽설정 후, 전산화치료계획시스템(Eclipse 16.1, Varian medical system, USA)을 사용하여 치료계획을 수립하였다. 전자선6MeV을 사용하여 치료계획하고, phantom흉부쪽에 9개의 선량측정 point를 지정하였고, 해당 point에서의 Air-gap을 측정하였으며, 유리선량계(PLD)를 이용하여 적용하는 Bolus마다 동일 point에서의 선량평가를 진행하였다. 결 과: 3D-bolus 5mm와 Step-bolus 5mm를 결합한 Bolus를 제작하였고, 3D-bolus 1cm과 비교 평가하였다. 3D Bolus의 상대적전자밀도(Relative Electron Density)는 1.0559g/cm2, Step Bolus는 1.0590g/cm2로 0.01%이하의 차이여서 상대적전자밀도가 거의 일치했다. Air-gap의 경량 측정에서 Combined bolus는 3D-bolus와 비교하여 지정된 모든 point에 대해서 Air-gap은 많게는 54.32%로 줄거나 같았다. 유리선량계(PLD)를 이용한 선량측정에서는 경사진 point를 제외한 대부분의 point에서 combined bolus를 사용한 phantom에서 치료계획의 선량과의 일치도가 높았다. 결 론: 3D-bolus와 Step-bolus를 결합하여 만든 Combined bolus는 3D-bolus와 Step-bolus가 갖는 각각의 장점을 모두 갖는다. 또한 Air-gap으로 인한 선량부정확성을 억제하여 보다 향상된 선량분포를 보여주어, 효과적인 방사선 치료를 할 수 있다.

Keywords

References

  1. K. Alireza, B. Peter, Y. Ellen, et al., "Beam Spoilers ver- sus Bolus for 6 mv Photon Treatment of Head and Neck Cancers," Medical Dosimetry, Vol. 25, No. 3, 2000, pp. 127-131. doi:10.1016/S0958-3947(00)00038-8
  2. S. H. Hsu, P. L. Roberson, Y. Chen, et al., "Assessment of Skin Dose for Breast Chest Wall Radiotherapy as a Function of Bolus Material," Physics in Medicine & Bi- ology, Vol. 53, No. 10, 2008, pp. 2593-2606. doi:10.1088/0031-9155/53/10/010
  3. N. Lee, C. Chuang, J. M. Quivey, et al., "Skin Toxicity Due to IMRT for Head-and-Neck Carcinoma," Interna- tional Journal of Radiation Oncology Biology Physics, Vol. 53, No. 3, 2002, pp. 630-637. doi:10.1016/S0360-3016(02)02756-6
  4. P. D. Higgins, E. H. Han, J. L. Yuan and C. K. Lee, "Evaluation of Surface and Superficial Dose for Head and Neck Treatments Using Conventional or IMRT Tech- niques," Physics in Medicine & Biology, Vol. 52, 2007, pp. 1135-46. doi:10.1088/0031-9155/52/4/018
  5. N. Dogan and Glasgow, "Surface and Build-Up Region Dosimetry for Obliquely Incident IMRT 6MV X Rays," Medical Physics, Vol. 30, No. 12, pp. 3091-3096. doi:10.1118/1.1625116
  6. S. Yokoyama, P. L. Roberson, D. W. Litzenberg, et al., "Surface Buildup Dose Dependence on Photon Field De- livery Technique for IMRT," Journal of Applied Clinical Medical Physics, Vol. 5, No. 2, 2004, pp. 71-81. doi:10.1120/jacmp.2020.21706
  7. A. Gray, L. D. Oliver and P. N. Johnston, "The Accuracy of the Pencil Beam Convolution and Anistropic Ana- lytical Algorithms in Predicting the Dose Effects Due to Attenuation from Immobilization Devices and Large Air Gaps," Medical Physics, Vol. 36, No. 7, 2009, pp. 3181-3191. doi:10.1118/1.314720
  8. Pezner RD, Lipsett JA, Forell B, Vora NL, Desai K, Wong JY, Luk KH. The reverse hockey stick technique: ostmastectomy radiation therapy for breast cancer patients with locally advanced tumor presentation or extensive loco-regional recurrence. Int J Radiat Oncol Biol Phys, 1989;17:191-197
  9. Tapley N, ed. Clinical applications of the electron beam. New York, John Wiley & Sons, 1976.
  10. Veronesi U, Saccozzi R, Del Vecchio M: Comparing radical mastectomy with quadrantectomy, axillary dissection, and adiotherapy in patients with smallcancers of the breast. N Engl J Med, 1981;305:6 https://doi.org/10.1056/NEJM198107023050102
  11. Sharma S. C, Johnson M. W: Surface dose perturbation due to air gap between patient and bolus for electron beams. Medical physics, 1993;20,377-378 https://doi.org/10.1118/1.597079
  12. M. Kong, L. Holloway: An investigation of central axisdepth dose distribution perturbation due to an air gap between patient and bolus for electron beams. Australasian Physical & Engineering Sciences in Medicine, 2007;30,111-119 https://doi.org/10.1007/BF03178415
  13. S. M. Fuller, D. R. Butz, C. B. Vevang, M. V. Makhlouf: Application of 3-dimensional printing in hand surgery for production of a novel bone reduction clamp. J Hand Surg Am, 2014;39,1840-1845 https://doi.org/10.1016/j.jhsa.2014.06.009
  14. Spezi E, Angelini AL, Romani F, Ferri A. "Characterization of a 2D ion chamber array for the verification of radiotherapy treatments", Phys Med Biol, 50:3361-73, 2005. https://doi.org/10.1088/0031-9155/50/14/012
  15. Kissick MW, Fenwick J, James JA, et al: "The helical tomotherapy thread effect", Med Phys, 32: 1414-1423, 2005. https://doi.org/10.1118/1.1896453
  16. Chen M, Chen Y, Chen Q, et al: "Theoretical analysis of the thread effect in helical TomoTherapy", Med Phys, 38:5945-5960, 2011. https://doi.org/10.1118/1.3644842
  17. Yutaka T. Michael R. Verneris, Y, et al. "Peripheral Dose Heterogeneity Due to the Thread Effect in Total Marrow Irradiation With Helical Tomotherapy", Int J Radiation Oncol Biol Phys, 87: 832-839, 2013. https://doi.org/10.1016/j.ijrobp.2013.07.017