DOI QR코드

DOI QR Code

A Study on Applicability of Smartphone Camera and Lens for Concrete Crack Measurement Using Image Processing Techniques

이미지 처리기법을 이용한 균열 측정시 스마트폰 카메라 및 렌즈 적용성에 대한 연구

  • Received : 2021.11.22
  • Accepted : 2021.12.06
  • Published : 2021.12.31

Abstract

Recently, high-resolution cameras in smartphones enable measurement of minute objects such as cracks in concrete using image processing techniques. The technology to investigate the crack width using an application at an adjacent distance of the close shot range has already been implemented, but the use is limited, so it is necessary to verify the usability of the high-resolution smartphone camera to measure cracks at a longer distance. This study focuses on recognizing the size of subdivided crack widths at a thickness within 1.0 mm of crack width at a distance of 2 m. In recent Android-based smartphones, an experiment was conducted focusing on the relationship between the unit pixel size, which is a measurement component, and the shooting distance, depending on the camera resolution. As a result, it was possible to confirm the necessity of a smartphone lens for the classification and quantification of microcrack widths of 0.3 mm to 1mm. The universal telecentric lens for smartphones needed to be installed in an accurate position to minimize the effect of distortion. In addition, as a result of applying a 64 MP high-resolution smartphone camera and double magnification lens, the crack width could be calculated within 2 m in pixel units, and crack widths of 0.3, 0.5, and 1mm could be distinguished.

최근 스마트폰의 고해상도 카메라는 영상처리 기법을 이용하여 콘크리트 균열과 같은 미세한 피사체의 측정을 가능하게 한다. 이미 접사 범위 정도의 가까운 거리에서 어플리케이션을 이용하여 균열폭을 조사하는 기술이 구현되어있으나, 이용에 제한적이므로 보다 먼 거리에서 균열을 측정할 수 있도록 스마트폰 고해상도 카메라의 사용성 검증이 필요하다. 본 연구는 2m 이내에서 거리에서 균열폭 1.0mm 이내의 두께에서 세분화된 균열폭들의 크기 인지에 초점을 두고 있다. 최근의 안드로이드 기반 스마트폰들을 대상으로 카메라 해상도에 따라 측정 구성요소인 단위 픽셀 크기와 촬영거리와의 관계를 중심으로 실험을 수행하였으며, 그 결과 0.3mm 이상 1mm 이하 미세 균열폭의 구분과 정량화를 위해서 스마트폰용 렌즈의 필요성을 확인할 수 있었다. 스마트폰용 범용 텔레센트릭 렌즈는 왜곡의 영향을 최소화하기 위해서 정확한 위치에 장착이 필요하였다. 또한, 64MP의 고해상도 스마트폰 카메라와 2배 확대렌즈를 적용한 결과 2m 이내에서 픽셀단위로 균열폭을 산정할 수 있었으며, 0.3mm, 0.5mm, 1mm 균열폭 구분이 가능하였다.

Keywords

Acknowledgement

This research was supported by a grant from the project "Development of mobile images and cloud-based portable structures crack investigation device" which was funded by the Korean Institute of Civil Engineering and Building Technology (KICT) and the Construction Technology Research Program (21SCIP-C151438-03) funded by the Ministry of Land, Infrastructure and Transport of Korean government.

References

  1. Doihara, T., Hirono, K. and Oda, K. (1993), "Crack measuring system based on Hierarchical Image Processing technique", International Archives of Photogrammetry and Remote Sensing, Vol.29, No.5, pp.155-159.
  2. Jeong, S. S., Heo, J. and Woo, S. K. (2008), "Empirical modeling of lens distortion in change of focal length", Korean Journal of Geomatics, Vol.26, No.1, pp.93-100. (in Korean)
  3. Lee, B. Y., Kim, Y. Y. and Kim, J. K. (2005), "Development of image processing for concrete surface cracks by employing enhanced binarization and shape analysis technique", Journal of the Korea Concrete Institute, Vol.17, No.3, pp.361-368. (in Korean) https://doi.org/10.4334/JKCI.2005.17.3.361
  4. Lee, H. B., Kim, J. W. and Jang, I. Y. (2012), "Development of automatic crack detection system for concrete structure using image processing method", Journal of the Korea Institute for Structural Maintenance and Inspection, Vol.16, No.1, pp.64-77. (in Korean) https://doi.org/10.11112/JKSMI.2012.16.1.064
  5. Ni, T., Zhou, R., Gu, C. and Yang, Y. (2020), "Measurement of concrete crack feature with android smartphone APP based on digital image processing techniques", Measurement, Vol. 150, 107093. https://doi.org/10.1016/j.measurement.2019.107093
  6. Oh, S-J. (2012), "A study on characteristics of smart phone camera module for measuring a shooting object", The Journal of the Institute of Internet, Broadcasting and Communication, JIWIT, Vol.12, No.5, pp.99-105. (in Korean) https://doi.org/10.7236/JIWIT.2012.12.5.99
  7. Otsu, N. (1979), A threshold selection method from gray-level histogram. IEEE Transactions on Systems, MAN, and Cybernetics, vol.SMC-9, No.1, pp.62-66. https://doi.org/10.1109/TSMC.1979.4310076
  8. Seo, S., Ohn, S-Y., Kim, D-H., Kwak, K. and Chung, M. (2020), "A study on development of portable concrete crack measurement device using image processing technique and laser sensors", Journal of Geosynthetics Society, Vol.19, No.4, pp.41-50. (in Korean)
  9. Sonka, M., Hlavac, V. and Boyle R. (2015). "Image processing, analysis, and machine vision", 4th edition of CL Engineering, Boston, MA.
  10. Tanaka, N. and Uematsu, K. (1998), "A crack detection method in road surface images using morphology", Proceeding of IAPR Workshop on Machine Vision Application, Chiba, Japan. pp.154-157.
  11. Zhang, W., Zhang, Z., Qi, D. and Liu, Y. (2014), "Automatic crack detection and classification method for subway tunnel safety monitoring", Sensors, 14, pp.19307-19328. https://doi.org/10.3390/s141019307