DOI QR코드

DOI QR Code

미래 동물생명산업 발전전략으로써 스마트축산의 응용: 리뷰

Applying a smart livestock system as a development strategy for the animal life industry in the future: A review

  • 박상오 (강원대학교 동물생명과학대학 동물자원공동연구소)
  • Park, Sang-O (Institute of Animal Resources, Kangwon National University)
  • 투고 : 2021.01.29
  • 심사 : 2021.02.26
  • 발행 : 2021.02.28

초록

본 논문은 과학논문을 통해 30년 후인 2050년까지 가축과 동물성식품의 동향을 예측하면서 미래 동물생명산업 발전 전략으로써 ICT-기반 스마트축산 기술의 필요성을 검토하였다. 전 세계적으로 가축사육과 동물성식품 소비는 인구증가, 고령화, 농촌인구 감소, 도시화 및 소득증가에 대한 반응으로 빠르게 변화하고 있다. 기후변화는 가축 환경, 생산성과 번식효율성을 바꿀 수 있다. 가축생산은 온실가스 배출 증가, 토지 황폐화, 수질오염, 동물복지 및 인간의 건강 문제로 이어질 것이다. 이러한 문제를 해결하기 위해 동물생명산업의 다양한 측면에서 4차 산업혁명과 융합된 ICT-기반 스마트축산을 활용하여 기후변화 대응, 생산성 향상, 동물복지, 동물성식품 영양품질 개선, 동물의 질병예방을 위한 선제적인 미래 대응전략이 필요하다. 미래 동물생명산업은 지속 가능성과 생산효율성을 향상시키기 위해 자동화를 통합해야 한다. 디지털 시대에 IoT와 빅 데이터를 사용하는 지능형 정밀가축사양, ICT-기반 스마트축산은 동물생명산업의 다양한 소스로부터 데이터를 수집, 처리 및 분석할 수 있다. 축사 내부와 외부의 환경 매개 변수를 정밀하게 원격 제어할 수 있는 디지털 시스템으로 구성되어있다. ICT-기반 스마트축산은 인터넷과 휴대폰을 통한 원격 제어를 위해 센싱 기술을 사용하여 동물의 행동복지 및 사양관리를 모니터링 할 수 있다. 농가가 필요로 하는 광범위한 정보의 수집, 저장, 검색 및 보급에 도움이 될 수 있고 새로운 정보서비스를 제공할 수 있다.

This paper reviewed the necessity of a information and communication technology (ICT)-based smart livestock system as a development strategy for the animal life industry in the future. It also predicted the trends of livestock and animal food until 2050, 30 years later. Worldwide, livestock raising and consumption of animal food are rapidly changing in response to population growth, aging, reduction of agriculture population, urbanization, and income growth. Climate change can change the environment and livestock's productivity and reproductive efficiencies. Livestock production can lead to increased greenhouse gas emissions, land degradation, water pollution, animal welfare, and human health problems. To solve these issues, there is a need for a preemptive future response strategy to respond to climate change, improve productivity, animal welfare, and nutritional quality of animal foods, and prevent animal diseases using ICT-based smart livestock system fused with the 4th industrial revolution in various aspects of the animal life industry. The animal life industry of the future needs to integrate automation to improve sustainability and production efficiency. In the digital age, intelligent precision animal feeding with IoT (internet of things) and big data, ICT-based smart livestock system can collect, process, and analyze data from various sources in the animal life industry. It is composed of a digital system that can precisely remote control environmental parameters inside and outside the animal husbandry. The ICT-based smart livestock system can also be used for monitoring animal behavior and welfare, and feeding management of livestock using sensing technology for remote control through the Internet and mobile phones. It can be helpful in the collection, storage, retrieval, and dissemination of a wide range of information that farmers need. It can provide new information services to farmers.

키워드

참고문헌

  1. L. Gilpin, How big data is going to help feed nine billion people by 2050. Available From: http://www.techrepublic.com/article/how-big-data-is-going-to-help-feed-9-billion-people-by-2050/.
  2. FAO, Information and communication technology (ICT) in agriculture. A report to the G20 agricultural deputies, Rome, (2017).
  3. I. Halachmi, M. Guarino, J. Bewley, M Pastell, "Smart animal agriculture: Application of real-time sensors to improve animal well-being and production", Annual Review of Animal Biosciences, Vol.7, No.1 pp. 403-425. (2019). https://doi.org/10.1146/annurev-animal-020518-114851
  4. J. Bruinsma, World agriculture: Towards 2015/2030, An FAO perspective. Earthscan, FAO, Rome, Italy, (2003).
  5. H. Steinfeld, P. Gerber, T. Wassenaar, V. Castel, M. Rosales, C. De Haan, Livestock's long shadow: environmental issues and options, FAO, Rome, Italy, (2006).
  6. FAO, The state of food and agriculture: Livestock in the balance. FAO, Rome, Italy. Available From: http://www.fao.org/docrep/012/i0680e/i06880e00.htm, (2009).
  7. J. A. Foley, N. Ramankutty, K .A. Brauman, E. S. Cassidy, J. S. Gerber, M. Johnston, N. D. Mueller, C. O''Connell, D. K. Ray, P. C. West, C. Balzer. E. Bennett, S. R. Carpenter, J. Hill, C. Monfreda, S. Polasky, J. Rockstrom, J. Sheehan, S. Siebert, D. Tilman, D. P. M. Zaks, "Solutions for a cultivated planet". Nature. Vol.478, No.369 pp. 337-342, (2011). https://doi.org/10.1038/nature10452
  8. H. P. S. Makkar, "Smart livestock feeding strategies for harvesting triple gain-the desired outcomes in planet, people and profit dimensions: a developing country perspective". Animal Production Science, Vol.56, No.3 pp. 519-534, (2016). https://doi.org/10.1071/AN15557
  9. M. Herrero, P. K. Thornton, A. M. Notenbaert, S. Wood, S. Msangi, H. A. Freeman, D. Bossio, J. Dixon, M. Peters, J. van de Steeg, J. Lynam, P. P. Rao, S. Macmillan, B. Gerard, J. McDermott, C. Sere, M. Rosegrant, "Smart investments in sustainable food production: revisiting mixed crop-livestock systems". Science, Vol.327, No.5967 pp. 822-825, (2020). https://doi.org/10.1126/science.1183725
  10. FAO, World livestock 2011-livestock in food security. FAO, Rome, Italy, Available From: http://www.fao.org/docrep/014/i2373e/i2373e00.htm. (2011).
  11. FAO, World agriculture: towards 2030/2050. Interim report, Global perspective studies unit. FAO, Rome, Italy, (2006).
  12. Deloitte, Smart livestock farming, potential of digitalization froglobal meat supply. Available From: https://www2.deloitte.com/content/dam//Deloitte/de/Documents/operations/Smart-livestock-farming_Deloitte.pdf, (2017).
  13. J. A. Ferguson, The world in 2050-challenges for veterinary medicine. University of Pennsylvania, (2011).
  14. D. Tilman, K. G. Cassman, P. A. Matson, R. Naylor, S. Polasky, "Agricultural sustainability and intensive production practices". Nature, Vol.418, No.6898 pp. 671-677, (2002). https://doi.org/10.1038/nature01014
  15. L. O. Tedeschi, J. P. Muir, D. G. Riley, D. G. Fox, "The role of ruminant animal in sustainable livestock intensification programs", International Journal of Sustain Development World Ecology, Vol.22, No.5 pp. 452-465, (2002).
  16. H. P. S. Makkar, D. Beever, "Optimization of feed use efficiency in ruminant production systems". FAO Animal Production and Health Proceedings, No.16, FAO, Rome, Italy, and Asian-Australasian Association of Animal Production Societies, (2013).
  17. K. M. Shikuku, R. O. Valdivia, B. K. Paul, M. Caroline, "Prioritizing climate-smart livestock technologies in rural Tanzania: A minimumdata approach", Agricultural Systems, Vol.151, No.8 pp.1-13, (2016).
  18. K. Freeman, C. Mungai, The future of farming: The potential of young people in the agriculture sector. CCAFS (climate change, agriculture and food security). Climate adaptation summit 2021. Available From: https://ccafs.cgiar.org/. (2018).
  19. V. A. Zammit, S. O. Park, "Effect of smart poultry on growth performance, blood biochemical parameters, caecal fermentation indices of broiler chickens". Animal Nutrition and Feed Technology, Vol.20, No.1 pp. 419-432, (2020). https://doi.org/10.5958/0974-181X.2020.00037.2
  20. FAO, Climate change to reduce food production pp. 1-14, FAO, Rome, Italy, (2014).
  21. M. Herrero, S, Wirsenius, B. Henderson, C. Rigolot, P. Thornton, P. Havlik, I. De Boer, P. J. Gerber, "Livestock and the environment: What have we learned in the past decade?", Annual Review of Environment Resources, Vol.40, No.5 pp. 177-202, (2015). https://doi.org/10.1146/annurev-environ-031113-093503
  22. C. So-in, S. Poolsanguan, K. Rujirakul, "A hybrid mobile environmental and population density management system for smart poultry farms". Computers and Electronics in Agriculture. Vol.109, No.C pp. 287-301, (2014). https://doi.org/10.1016/j.compag.2014.10.004
  23. M. Sneha, T. N. Raghavendra., H. P. Kumar, "Internet based smart poultry farm using LabVIEW. International Research Journal of Engineer Technology, Vol.3, No.12 pp. 107-111, (2016).
  24. V. A. Zammit, S. O. Park, "Utilization of ICT convergence system to smart poultry feeding on fatty acid and cholesterol of egg, behavior and welfare of laying hens". Mitteilungen Klosterneuburg, Vol.69, No.5 pp. 79-90, (2019a).
  25. V. A. Zammit, S. O. Park, "Effects of utilization of IOT automatic system in smart poultry feeding on meat quality, behavior, and welfare of broiler chickens". Mitteilungen Klosterneuburg, Vol.69, No.5 pp. 2-12, (2019b).
  26. Steenwerth, et al., "Climate-smart agriculture global research agenda: scientific basis for action". Agriculture and. Food Security. Vol.3, No.1 pp. 11, (2014). https://doi.org/10.1186/2048-7010-3-11
  27. L. S. Handigolkar, M. L. Kavya, P. D. Veena, "Iot based smart poultry farming using commodity hardware and software". Bonfring International Journal of Software Engineering and Soft Computing, Vol.6, No.S pp. 171-175, (2016). https://doi.org/10.9756/BIJSESC.8269
  28. R. Hoste, H. Suh, H. Kortstee, Smart farming in pig production and greenhouse horticulture; An inventory in the Netherlands, Technical report 2017-097. p38. Wageningen, Wageningen University & Research, (2017).
  29. E. Hitimana, G. Bajpai, R. Musabe, L. Sibomana, "Remote monitoring and control of poultry farm using IoT techniques". International Journal of Latest Technology in Engineering, Management & Applied Science, Vol.7, No.5 pp. 87-90, (2018).
  30. J. Astill, R. A. Dara, E. D. G. Fraser, B. Roberts, S. Sharif, "Smart poultry management: Smart sensors, big data, and the internet of things". Computers and Electronics in Agriculture. Vol.170, No.2 pp. 105291-105402, (2020). https://doi.org/10.1016/j.compag.2020.105291
  31. Hoards Dairyman, "Rabobank analysts say digital agriculture is most promising innovation to the industry". Available From: https://www.rabobankamerica.com/news-and-press-raf/latestnews/2017/may/bunglejungle, (2017).
  32. S. Neethirajan, "The role of sensors, big data and machine learning in modern animal farming". Sensing and Bio-Sensing Research, Vol.29, No.8 pp. 100367-00375, (2020). https://doi.org/10.1016/j.sbsr.2020.100367
  33. D. Berckmans, "General introduction to precision livestock farming". Animal Frontiers, Vol.7, No.1 pp. 6-11, (2017). https://doi.org/10.2527/af.2017.0102
  34. E. A. Laca, "Precision livestock production: tools and concepts". Revista Brasileira de Zootecni, Vol.38, No.S pp. 123-132, (2009). https://doi.org/10.1590/S1516-35982009001300014
  35. H. Okada, H. Nogami, T. Kobayashi, T. Masuda, T. Itoh, Development of ultra low power wireless sensor node with piezoelectric accelerometer for health monitoring, The 17th International Conference on Solid-State Sensors, Actuators and Microsystems, Tansducers and Eurosensors, XXVII, (2013).
  36. X. Xu, W. Liang, Z. Xu, "Remote monitoring cost minimization for an unreliable sensor network with guaranteed network throughput". Information Processing in Agriculture, Vol.1, No.3 pp. 83-94, (2014). https://doi.org/10.1016/j.inpa.2014.10.001
  37. M. H. Anisi, G. Abdul-Salaam, A. H. Abdullah, "A survey of wireless sensor network approaches and their energy consumption for monitoring farm fields in precision agriculture". Precision Agriculture, Vol.16, No.2 pp. 216-238, (2014).. https://doi.org/10.1007/s11119-014-9371-8
  38. K. S. Goud, A. Sudharson, "Internet based smart poultry farm". Indian Journal of Science and Technology, Vol.18, No.1 pp. 101-106, (2015).
  39. M. Goawami, K. Bhatt, "IOT based smart greenhouse and poultry farm environment monitoring and controlling using lamp server and mobile application". International Journal of Advance Research and Innovative Ideas in Education. Vol.3, No.2 pp. 4114-4124, (2017).
  40. E. Navarro, N. Costa, A. Pereira, "Review. A systematic review of IoT solutions for smart farming". Sensors, Vol.20, No.2 pp. 4231-4260, (2020). https://doi.org/10.3390/s20154231
  41. K. H. Um, S. O. Park, V. A. Zammit. "Utilization of ICT-based feeding system on egg production, egg quality, blood parameters and caecal microflora in laying hens". Animal Nutrition and Feed Technology, Vol.20, No.2 pp. 289-300 (2020). https://doi.org/10.5958/0974-181X.2020.00026.8
  42. FAO, Climate-smart agriculture, Available From: http://www.fao.org/i3325e/3325e.df, (2013a).
  43. FAO, Climate smart livestock in: Climate-mart agriculture source book. Rome, Italy, (2013b)..
  44. P. K. Thornton, M. Herrero, "Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics". Proceedings of the National Academy of Sciences, 2010; Vol.107, No.46 pp. 19667-19672, (2010). https://doi.org/10.1073/pnas.0912890107
  45. C. Delgado, "Rising consumption of meat and milk in developing countries has created a new food revolution", Journal of Nutrition, Vol.133, No.11 pp. 3907S-910S, (2003). https://doi.org/10.1093/jn/133.11.3907S
  46. M. W. Rosegrant, M. Fernandez, A. Sinha, J. Alder, H. Ahammad, C. de Fraiture, B. Eickhout, J. Fonseca, J. Huang, O. Koyama, A. M. Omezzine, P. Pingali, R. Ramirez, C. Ringler, S. Robinson, P. Thornton, D. van Vuuren, H. Yana-Shapiro, Looking into the futurefor agriculture and AKST (Agricultural Knowledge Science and Technology), pp. 307-376 in Agriculture at a Crossroads (eds. B. D. McIntyre, H. R. Herren, J. Wakhungu, R. TWatson), Island Press, Washington DC, (2009).
  47. B. Salvage, "Global meat consumption to rise 73 percent by 2050: FAO", Meat+poultry, (2011).
  48. B. Bodirsky, S. Rolinski, I. Weindl, "Global food demand scenarios for the 21 century", PLoS ONE, Vol.10, No.11, pp. e0139201, (2015). https://doi.org/10.1371/journal.pone.0139201
  49. P. K. Thornton, "Livestock production: recent trends, future prospects". Vol.365, No. 1554 pp. 2853-2867, (2010). https://doi.org/10.1098/rstb.2010.0134
  50. D. P. Van Vuren, W. O. Ochola, S. Riha, M. Giampietro, H. Ginzo, T. Henrichs, S. Hussain, K. Kok, M. Makhura, M. Mirza, K. P. Palanisama, C. R. Ranganathan, S, Ray, C. Ringler, A. Rola, H. Westhoek, M. Zurek, Outlook on agricultural change and its drivers. pp. 255-305, in Agriculture at a Crossroads (eds. B. D. McIntyre, H. R. Herren, J. Wakhungu, R. T. Watson), Island Press, Washington DC, (2009).
  51. J. Linden, Global poultry trends 2013: Asia consumes 40 percent of world's chicken, Available From: https://www.hepoultrysite.om/articles/global-poultry-trends--2013-asia-consumes-40-per-cent-of-worlds-chicken, (2013).
  52. J. D. Ferguson, The world in 2050- hallenges or veterinary medicine, Philadelphia ociety for Promoting Agriculture, Available From: http://pspaonline.com/resources/meetings/10-06-12/, (2011).
  53. OECD-FAO, Agricultural outlook 2010-2019. Available From: http://www.agrioutlook.org/document/10/0,3746,en_36774715_36775671_42852746_1_1_1_1,00.html), (2010).
  54. B. Y. Melkamu, G. Berhane, "Livestock production systems analysis: Review", American International Journal of Contemporary and Scientific Research, Vol.1, No.2 pp. 16-54, (2014).
  55. J. Lundqvist, C. de Fraiture, D. Molden, Saving water: from field to fork. Curbing losses and wastage in the food chain, SIWI policy brief. Available From: http://www.siwi.org/documents/Resources/Policy_Briefs/PB_From_From_Filed_to_Fork__2008.pdf, (2008).
  56. D. Frona, J. Szenderak, M. Harangi-Rakos, "Review, The challenge of feeding the world", Sustainability, Vol.11, No.2 pp. 5816-5834, (2013).
  57. M. Herrero, P. Havlik, H. Valin, A., Notenbaert, M. C. Rufino, P. K. Thornton, F. Weiss, D. Grace, M. Obersteiner, "Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems", Proceedings of the National Academy of Sciences of the United States of America, Vol.110, No.1 pp. 20888-20893, (2013). https://doi.org/10.1073/pnas.1308149110
  58. M. Ishii-Eiteman, L. L. Ching, "The IAASTD report", Development, Vol.51, No.2 pp. 570-573, (2008) https://doi.org/10.1057/dev.2008.58
  59. Millennium Ecosystem Assessment, Ecosystems and human wellbeing: Scenarios, Island Press, Available From: http://www.maweb.org//en/products.global.scenarios.aspx. (2005).
  60. M. Rodell, I. Velicogna, J. S. Famiglietti, "Satellite-based estimates of ground water depletion in India", Nature, Vol.460, No.4 pp. 999-1002, (2009). https://doi.org/10.1038/nature08238
  61. S. Macmillanl, Future of (sustainable) livestock production: Efficient, but measured. time magazine on major new ILRI study, ILRI Clippings, (2013).
  62. M. W. Rosegrant, X. Cai, S. A. Cline, N. Nakagawa, The role of rainfed agriculture in the future of global food product, International Food Policy Research Institute, Washington, D.C. U.S.A. Available From: https://www.researchgate.net/publication/5056180_The_Role_of_Rainfed_Agriculture_in_the_Future_of_Global_Food_Production, (2002).
  63. M. Peden, O. Kobusingye, M. E. Monono, "Africa's roads-the deadliest in the world", South African Medical Journal, Vol.103, No.4 pp. 228-229, (2007).
  64. P. K. Nayak, D. Armitage, M. Andrachuk, "Power and politics of social-ecological regime shifts in the Chilika Lagoon, India and Tam Giang lagoon, Vietnam", Regional. Environmental Change, Vol.16, No.1 pp. 325-339, (2016). https://doi.org/10.1007/s10113-015-0775-4
  65. Intergovernmental panel on climate change, Climate change 2007: Impacts, adaptation and vulnerability, Summary for policymakers, Avail From: http://www.ipcc.cg/SPM13apr07.pdf, (2007).
  66. P. J. Gerber, H. Steinfeld, B. Henderson, A. Mottet, C. Opio, J. Dijkman, A. Falcucci, G. Tempio, Tackling climate change through livestock-A global assessment of emissions and mitigation opportunities, FAO, Rome, Italy, Available From: http://www.fao.org/docrep/018/i3437e/i3437e.pdf, (2013).
  67. S. B. N. Rao, K. S. Prasad, D. Rajendran, "Recent advances in ameelioration of anti-nutritional factors in livestock feedstuffs", Animal Nutrition and Reproductive Physiology (Recent concepts), Vol.13, No.1 pp, 655-678, (2013),
  68. EPA, Global anthropogenic non-CO2 greenhouse gas emissions: 1990-2020, United States Environmental Protection Agency, EPA 430-R-06-003, Washington, DC, Available From: https://www.epa.gov/global-mitigation-non-CO2-greenhouse-gases/global-non-CO2-ghg-emissions-1990-2030 (2006).
  69. A. Moumen, G. Azizi, B. ChekrounK, M. Baghour, "The effects of livestock methane emission on the global warming: A review", International Journal of Global Warming, Vol.9, No.2 pp. 229-253, (2016). https://doi.org/10.1504/IJGW.2016.074956
  70. P. Huhtanen, M. Ramin, P. Uden, "Nordic dairy cow model Karoline in predicting methane emissions: 1. Model description and sensitivity analysis", Livestock Science, Vol.178, No3. pp. 71-90, (2015). https://doi.org/10.1016/j.livsci.2015.05.009
  71. Uniting on climate, A guide to the climate change convention and the Kyoto protocol, United nations framework convention on climate change, UNFCCC, Germany, Available From: https://unfccc.int/resource/docs/publications/unitingonclimate_eng.pdf, (2007).
  72. J. R. Knapp, G. L. Laur, P. A. Vadas, W. P. Weiss, J. M. Tricarico, "'Invited review: enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions", Journal Dairy Science, Vol.97, No.6 pp. 3231-261, (2014). https://doi.org/10.3168/jds.2013-7234
  73. M. Herrero, P. K. Thomton, R. Reid, "Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030", Agriculture Ecosystems and Environment, Vol.126, No.2 pp. 122-137, (2008). https://doi.org/10.1016/j.agee.2008.01.017
  74. C. Wang, J. X. Liu, H. P. S. Makkar, H. F. Wang, H. Y. Liu, N. B. Wei, D. M. Tai, "Production level, feed conversion efficiency and nitrogen use efficiency of dairy production systems in China", Tropical Animal Health and Production, Vol.46, No.2 pp. 669-673, (2014). https://doi.org/10.1007/s11250-014-0550-4
  75. M. J. O'Grady, G. O'Hare, "Modelling the smart farm", Information Processing in Agriculture, Vol.4, No.3 pp. 1-30. (2017).
  76. M.J. Bell, S. I. Potterton, J. Craigon, N. Saunders, R. H. Wilcox, M. Hunter, "Variation in enteric methane emissions among cows on commercial dairy farms", Animal, Vol.8, No.1 pp. 1540-1546, (2014). https://doi.org/10.1017/S1751731114001530
  77. J. Broucek, "Production of methane emissions from ruminant husbandry: a review", Journal of Environment Protection, Vol.5, No.2 pp. 1482-1566, (2014). https://doi.org/10.4236/jep.2014.515141
  78. C. Wachendorf, C. Lampe, F. Taube, K. Dittert, "Nitrous oxide emissions and dynamics of soil nitrogen under 15N-labeled cow urine and dung patches on a sandy grassland soil", Journal of Plant Nutrition Soil Science, Vol.171, No.2 pp. 171-180, (2008). https://doi.org/10.1002/jpln.200625217
  79. N. Alexandratos, J. Bruinsma, "World agriculture: Towards 2030/2050: the 2012 revision", ESA Working paper No.12-03. Rome, FAO. Available From: www.fao.org/economic/esa, (2012).
  80. E. H. Bennetzen, P. Smith, J. R. Porter, "Decoupling of greenhouse gas emissions from global agricultural production: 1970 -2050", Global Change Biology, Vol.22, No.2 pp. 763-781, (2015). https://doi.org/10.1111/gcb.13120
  81. M. J. Fisher, S. P. Braz, R. S. M. Dos Santos, S. Urquiaga, B. J. R. Alves, R. M. Boddey, "Another dimension to grazing systems: Soil carbon", Tropical Grasslands, Vol.41, No.2 pp. 65-83, (2007).
  82. FAO, Climate-smart agriculture policies, practices and financing for food security, adaptation and mitigation. Rome, Italy, (2010).
  83. M. Peters, M. Herrero, M. Fisher, K. H. Erb, I. Rao, G. V. Subbarao, "Challenges and opportunities for improving eco-efficiency of tropical forage-based systems to mitigate greenhouse gas emissions", Tropical Grasslands, Vol.1, No.1 pp. 137-148, (2013).
  84. R. B. Mahale, S. S. Sonavane, "Smart poultry farm monitoring using IOT and wireless sensor networks", International Journal of Advanced Research Computer Science, Vol.7, No.2 pp. 187-190, (2016).
  85. M. I. Yildirm, A. I. Taskin, "The effects of environmental enrichment on some physiological and behavioral parameters of broiler chicks", Brazilian Journal of Poultry Science, Vol.19, No.2 pp. 355-362, (2017). https://doi.org/10.1590/1806-9061-2016-0402
  86. N. Lacetera, "Impact of climate change on animal health and welfare", Animal Frontiers, Vol.9, No.1 pp. 26-31, (2019). https://doi.org/10.1093/af/vfy030
  87. P. Rabinowitz, C. Lisa, "Links among human health, animal health, and ecosystem health", Annual Review of Public Health, Vol.34, No.2 pp. 189-204, (2013), https://doi.org/10.1146/annurev-publhealth-031912-114426
  88. L. Basirico, U. Bernabucci, P. Morera, N. Lacetera, A. Nardone, "Gene expression and protein secretion of apolipoprotein B100 (ApoB100) in transition dairy cows under hot or thermoneutral environments", Italian Journal of Animal Science, Vol.8, No.2 pp. 592-594, (2009).
  89. N. Lacetera, Effect of environment on immune functions. In: Collier, R. J., and J. L. Collier, editors, Environmental physiology of livestock. Chichester (England): Wiley-Blackwell; pp. 165-179, (2012).
  90. A. Vitali, A. Felici, S. Esposito, U. Bernabucci, L. Bertocchi, C. Maresca, A. Nardone, N. Lacetera, "The impact of heat waves on dairy cow mortality", Journal of Dairy Science, Vol.98, No.3 pp. 4572-4579, (2015). https://doi.org/10.3168/jds.2015-9331
  91. A. Akbarian, J. Michiels, J. Degroote, M. Majdeddin, A. Golian, S. De Smet, "Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals", Journal of Animal Sciencem Biotechnology, Vol.7, No.12 pp. 37-51,(2016). https://doi.org/10.1186/s40104-016-0097-5
  92. M. E. J. Woolhouse, S. G. Sequeria, "Host range and emerging and reemerging pathogens", Emerging Infectious Diseases, Vol.11, No.12 pp. 1842-1847, (2006). https://doi.org/10.3201/eid1112.050997
  93. S. Milovanovic, "The role and potential of information technology in agricultural improvement", Ekonomika Poljoprivrede, Vol.61, No.2 pp. 471-485, (2014). https://doi.org/10.5937/ekoPolj1402471M
  94. Y. Liu, X. Pan, J. Li, "Current agricultural practices threaten future global food production", Journal of Agricultural and Environmental Ethics, Vol.28, No.2 pp. 203-216, (2015). https://doi.org/10.1007/s10806-014-9527-6
  95. D. Pivoto, D. D. Waquil, E. Talamini, C. P. S. Finocchio, V. F. D. Corte, G. de. V. Mores, "Scientific development of smart farming technologies and their application in Brazil", Information Processing in Agriculture, Vol.5, No.2 pp. 21-32, (2018). https://doi.org/10.1016/j.inpa.2017.12.002
  96. H. Mansor, A. N. Azlin, T. S. Gunawan, M. M. Kamal, A. Z. Hashim, "Development of smart chicken poultry farm", Indonesian Journal of Electrical Engineering and Computer Science, Vol.10, No.1 pp. 498-505, (2018). https://doi.org/10.11591/ijeecs.v10.i2.pp498-505
  97. S. Terence, G. Purushothaman, "Systematic review of internet of things in smart farming", Emerging Telecommunications Technologies, Vol.31, No.6 pp. e3958, (2020).
  98. P. Boucher, S. Nascimento, M. Kritikos, How blockchain technology could change our lives, Available From: http://www.p.europa.eu/stoa/ (2017).
  99. S. Wolfert, L. Ge, C. Verdouw, M. J. Boogaardt, "Big data in smart farming-A review", Agricultural Systems, Vol.153, No.2 pp. 69-80, (2017). https://doi.org/10.1016/j.agsy.2017.01.023
  100. T. Groher, K. Heitkamper, C. Umstaetter, "Digital technology adoption in livestock production with a special focus on ruminant farming", Animal, Vol.14, No.11 pp. 1-10, (2016).
  101. P. S. Naruka, S. Verma, S. S. Sarangdevot, C. P. Pachauri, S. Kerketta, J. P. Singh, "A study on role of whatsapp in agriculture value chains", Asian Journal of Agricultural Extension, Economics and Sociology, Vol.20, No.1 pp. 1-11, (2017).
  102. R. Gaire, L. Lefort, M. Compton, G. Falzon, D. Lamb, K. Taylor, Semantic web enabled smart farming, Available From: https://www.researchgate.net/publication/25570 4548_Semantic_Web_Enabled_Smart_Farming, (2013).
  103. K. Umemura, "Technical note: monitoring grazing bites and walking activity with pedometers", Journal of Dairy Science, Vol.96, No.2 pp. 1090-1093, (2013). https://doi.org/10.3168/jds.2012-5872
  104. L. A. Gonzalez, G. Bishop-Hurley, D. Henry, E. Charmley, 'Wireless sensor networks to study, monitor and manage cattle in grazing systems", Animal Production Science, Vol.54, No.2 pp. 1687-1693, (2014). https://doi.org/10.1071/AN14368
  105. W. Iwasaki, N. Morita, M. P. B. Nagata, "IoT sensors for smart livestock management", Chemical, Gas, and Biosensors for Internet of Things and Related Applications, pp. 207-221, (2019).
  106. S. Madakam, R. Ramaswamy, S. Tripathi, "Internet of things (IoT): A literature review", J. Comput. Commun. Vol.3, No.2 pp. 164-173, (2015).
  107. J. Ma, X. Zhou, S. Li, Z. Li, "Connecting agriculture to the internet of things through sensor networks", Computer Science, Vol.32, No1. pp. 84-87, (2011).
  108. A. Ilapakurti, C. Vuppalapati, "Building an IoT framework for connected dairy", 2015 IEEE 1st International Conference on Big Data Computing Service and Applications (BigDataService), pp. 275-285, (2015).
  109. P. P. Jayaraman, D. Palmer, A. Zaslavsky, A. Salehi, D. Georgakopoulos, "Addressing information processing needs of digital agriculture with Open IoT platform", Interoperability and Open-Source Solutions for the Internet of Things, Conference paper, pp 137-152, (2015).
  110. A. Kaloxylos, R. Eigenmann, F. Teye, Z. Politopoulou, S. Wolfert, C. Shrank, "Farm management systems and the future internet era", Computers and Electronics in Agriculture, Vol.89, No.2 pp. 130-134, (2012). https://doi.org/10.1016/j.compag.2012.09.002
  111. S. Barmpounakis, A. Kaloxylos, A. Groumas, L. Katsikas, V. Sarris, K. Dimtsa, "Management and control applications in agriculture domain via a future internet business to business platform", Information Processing in Agriculture, Vol.2, No.2 pp. 51-63, (2015). https://doi.org/10.1016/j.inpa.2015.04.002
  112. S. Fountas, G. Carli, C. G. Sorensen, Z. Tsiropoulos, C. Cavalaris, A. Vatsanidou, "Farm management information systems: Current situation and future perspectives", Comp Electron Agric. Vol.115, No1 pp. 40-50, (2015). https://doi.org/10.1016/j.compag.2015.05.011
  113. M. Caria, J. Schudrowitz, A. Jukan, N. Kemper, Smart farm computing systems for animal welfare monitoring, 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 152-157, (2017).
  114. K. Goswami, Y. Park, C. Song, "Impact of reviewer social interaction on online consumer review fraud detection", Journal of. Big Data, Vol.4, No.2 pp. 15-22, (2017) https://doi.org/10.1186/s40537-017-0075-6
  115. J. Koon, Sensor applications in smart livestock farming, Available From: https://enterpriseiotinsights.com/20180903/channels/fundamentals/sensor-applications-in-smart--livestock-farming, (2018).
  116. C. W. Zecha, J. Link, W. Claupein, "Mobile sensor platforms: categorisation and research applications in precision farming", Journal of Sensors and Sensor Systems, Vol.2, No1 pp. 51-72, (2013). https://doi.org/10.5194/jsss-2-51-2013
  117. S. Sarangi, A. Bisht, V. Rao, S. Kar, T. K. Mohanty, A. P. Ruhil, Development of a wireless sensor network for animal management: Experiences with Moosense, IEEE Advanced Networks and Telecommunications Systems 2014, Conference data, pp. 1-6, (2014).
  118. T. P. Robinson, P. K. Thornton, G. Franceschini, R. Kruska, F. Chiozza, Global livestock production systems, FAO and International Livestock Research Institute (ILRI), FAO, Rome, Italy, (2011).
  119. T. P. Robinson, G. W. Wint G. Conchedda, T. P. Van Boeckel, V. Ercoli, "Mapping the global distribution of livestock", PLoS ONE Vol.9, No.5 pp. e96084, (2014). https://doi.org/10.1371/journal.pone.0096084
  120. D. Tilman, K. G. Cassman, P. A. Matson, R. Naylor, S. Polasky, "Agricultural sustainability and intensive production practices", Nature, Vol.418, No.2 pp. 671-677, (2002). https://doi.org/10.1038/nature01014
  121. L. O. Tedeschi, J. P. Muir, D. G. Riley, D. G. Fox, "Future implications for animal production: A perspective on sustainable livestock intensification", Livestock Sustainable Intensification, Vol.52, No.1 pp. 1-23, (2015).
  122. J. C. Zhao, J. F. Zhang, Y. Feng, J. X. Guo, The study and application of the IOT technology in agriculture, 2010 3rd International Conference on Computer Science and Information Technology, Available From: https://ieeexplore.ieee.org/document/5565120, (2010).
  123. T. A. Jones, C. A. Donnelly, M. S. Dawkins, "Environmental and management factors affecting the welfare of chickens on commercial farms in the UK and Denmark stocked at five densities", Poultry Science, Vol.84, No.2 pp. 1155-1165, (2005). https://doi.org/10.1093/ps/84.8.1155
  124. I. M. Rupesh, S. N. Deshpande, M. A. Chaudhari, N. P. Wagh, "PLC based poultry automation system", International Journal of Science and Research, Vol.3, No.2 pp. 149-152, (2014).
  125. G. Corkery, S. Ward, C. Kenny, P. Hhemmninway, "Incorporating smart sensing technologies into the poultry industry", The Journal of World's Poultry Research, Vol.3, No2 pp. 106-128, (2014).
  126. M. E. Rajkumar, A. Kathiresan, M. Moulishankkar, N. Prabhataran, S. Vignesh, "Smart poultry farming", International Journal of Current Trends in Engineering & Research, Vol.3, No1 pp. 17-24, (2017). https://doi.org/10.23883/IJRTER.2017.2998.VMCG4
  127. D. F. Pereira, A. Naas, A. S. Salgado, C. R. Gaspar, C. A. Bighi, N. J. L. Penha, "Correlations among behavior, performance and environment in broiler breeders using multivariate analysis", Brazilian Journal of Poultry Science, Vol.9, No.2 pp. 207-213, (2007). https://doi.org/10.1590/S1516-635X2007000400001
  128. U. G. Simsek, B. Dalkilic, M. Ciftci, L. Halil, M. Cerci, M. Bahsi, "Effects of enriched housing design on broiler performance, welfare, chicken meat composition and serum cholesterol", Acta Veterinaria Brno, Vol.78, No.2 pp. 67-74, (2009). https://doi.org/10.2754/avb200978010067
  129. A. Defra, Welfare of farmed animals (England), Available From: http://www.legislation.gov.uk//ukdsi/2010/9780111503546/contents, (2010).
  130. G. A. Choukidar, N. A. Dawande, 'A survey on smart poultry farm automation and monitoring system", International Journal of Innovative Research in Science, Engineering and Technology, Vol.6, No.3 pp. 4806-4810, (2017).
  131. S. Meseret, "A review of poultry welfare in conventional production system", Livestock Research for Rural Development, Vol.28, No.2 pp. 234-245, (2016).
  132. A. Bercovich, Y. Edan, V. Alchanatis, U. Moallem, Y. Parmet, "Development of an automatic cow body condition scoring using body shape signature and fourier descriptors", Journal of Dairy Science, Vol.96, No.2 pp. 8047-8059, (2013). https://doi.org/10.3168/jds.2013-6568
  133. T. Van Hertem, C. Bahr, A. S. Tello, S. Viazzi, M. Steensels, "Lameness detection in dairy cattle: single predictor v. multivariate analysis of image-based posture processing and behaviour and performance sensing", Animal, Vol.10, No.2 pp. 1525-1532, (2016). https://doi.org/10.1017/S1751731115001457
  134. T. Van Hertem, T. A. Schlageter, S. Viazzi, M. Steensels, C. Bahr, "Implementation of an automatic 3D vision monitor for dairy cow locomotion in a commercial farm", Biosyst. Eng, Vol.173, No.1 pp. 166-175, (2018). https://doi.org/10.1016/j.biosystemseng.2017.08.011
  135. H. Lasi, P. Fettke, H .G. Kemper, T. Feld, M. Hoffmann, "Industry 4.0", Business and Information Systems Engineering, VOL.6, No.1 pp.239-242, (2014). https://doi.org/10.1007/s12599-014-0334-4
  136. Y. Liao, F. Deschamps, E. D. F. R. Loures, L. F. P. Ramos, "Past, present and future of industry 4.0-a systematic literature review and research agenda proposal", International Journal of Production Research, Vol.55, No.1 pp. 3609-3629, (2017). https://doi.org/10.1080/00207543.2017.1308576