DOI QR코드

DOI QR Code

Structures Related to Right Duo Factor Rings

  • Chen, Hongying (Department of Mathematics, Pusan National University) ;
  • Lee, Yang (Department of Mathematics, Yanbian University) ;
  • Piao, Zhelin (Department of Mathematics, Yanbian University)
  • 투고 : 2019.12.09
  • 심사 : 2020.06.04
  • 발행 : 2021.03.31

초록

We study the structure of rings whose factor rings modulo nonzero proper ideals are right duo; such rings are called right FD. We first see that this new ring property is not left-right symmetric. We prove for a non-prime right FD ring R that R is a subdirect product of subdirectly irreducible right FD rings; and that R/N∗(R) is a subdirect product of right duo domains, and R/J(R) is a subdirect product of division rings, where N∗(R) (J(R)) is the prime (Jacobson) radical of R. We study the relation among right FD rings, division rings, commutative rings, right duo rings and simple rings, in relation to matrix rings, polynomial rings and direct products. We prove that if a ring R is right FD and 0 ≠ e2 = e ∈ R then eRe is also right FD, examining that the class of right FD rings is not closed under subrings.

키워드

참고문헌

  1. G. Birkhoff, Subdirect unions in universal algebra, Bull. Amer. Math. Soc., 50(1944), 764-768. https://doi.org/10.1090/S0002-9904-1944-08235-9
  2. E. H. Feller, Properties of primary noncommutative rings, Trans. Amer. Math. Soc., 89(1958), 79-91. https://doi.org/10.1090/S0002-9947-1958-0098763-0
  3. K. R. Goodearl, Von Neumann regular rings, Pitman, London, 1979.
  4. Y. Hirano, C. Y. Hong, J. Y. Kim and J. K. Park, On strongly bounded rings and duo rings, Comm. Algebra, 23(1995), 2199-2214. https://doi.org/10.1080/00927879508825341
  5. C. Huh, S. H. Jang, C. O. Kim and Y. Lee, Rings whose maximal one-sided ideals are two-sided, Bull. Korean Math. Soc., 39(2002), 411-422. https://doi.org/10.4134/BKMS.2002.39.3.411
  6. C. Huh, H. K. Kim and Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra, 167(2002), 37-52. https://doi.org/10.1016/S0022-4049(01)00149-9
  7. S. U. Hwang, Y. C. Jeon and Y. Lee, Structure and topological conditions of NI rings, J. Algebra, 302(2006), 186-199. https://doi.org/10.1016/j.jalgebra.2006.02.032
  8. Y. C. Jeon, H. K. Kim, Y. Lee and J. S. Yoon, On weak Armendariz rings, Bull. Korean Math. Soc., 46(2009), 135-146. https://doi.org/10.4134/BKMS.2009.46.1.135
  9. H.-l. Jin, N. K. Kim, Y. Lee, Z. Piao and M. Ziembowski, Structures related to commutative factor rings, (submitted).
  10. T. Y. Lam, A first course in noncommutative rings, Springer-Verlag, New York, 1991.
  11. Y. Lee, On generalizations of commutativity, Comm. Algebra, 43(2015), 1687-1697. https://doi.org/10.1080/00927872.2013.876035
  12. J. V. Neumann, On regular rings, Proceedngs of the National Academy of Sciences, 22(1936), 707-713. https://doi.org/10.1073/pnas.22.12.707
  13. M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci., 73(1997), 14-17. https://doi.org/10.3792/pjaa.73.14
  14. H.-P. Yu, On quasi-duo rings, Glasgow Math. J., 37(1995), 21-31. https://doi.org/10.1017/S0017089500030342