참고문헌
- V. Barbu, I. Lasiecka and M. A. Rammaha, On nonlinear wave equations with degenerate damping and source terms, Trans. Amer. Math. Soc., 357(7)(2005), 2571-2611. https://doi.org/10.1090/S0002-9947-05-03880-8
- Y. Boukhatem and B. Benabderrahmane, Existence and decay of solutions for a viscoelastic wave equation with acoustic boundary conditions, Nonlinear Anal., 97(2014), 191-209. https://doi.org/10.1016/j.na.2013.11.019
- Y. Boukhatem and B. Benabderrahmane, Polynomial decay and blow up of solutions for variable coefficients viscoelastic wave equation with acoustic boundary conditions, Acta Math. Sin., 32(2)(2016), 153-174. https://doi.org/10.1007/s10114-016-5093-3
- X. Han and M. Wang, Global existence and blow-up of solutions for nonlinear viscoelastic wave equation with degenerate damping and source, Math. Nachr., 284(5-6)(2011), 703-716. https://doi.org/10.1002/mana.200810168
- J. M. Jeong, J. Y. Park and Y. H. Kang, Energy decay rates for viscoelastic wave equation with dynamic boundary conditions, J. Comput. Anal. Appl., 19(3)(2015), 500-517.
- J. M. Jeong, J. Y. Park and Y. H. Kang, Global nonexistence of solutions for a quasilinear wave equation with acoustic boundary conditions, Bound. Value Probl., (2017), Paper No. 42, 10 pp.
- J. M. Jeong, J. Y. Park and Y. H. Kang, Global nonexistence of solutions for a nonlinear wave equation with time delay and acoustic boundary conditions, Comput. Math. Appl., 76(2018), 661-671. https://doi.org/10.1016/j.camwa.2018.05.006
- Y. H. Kang, J. Y. Park and D. Kim, A global nonexistence of solutions for a quasilinear viscoelastic wave equation with acoustic boundary conditions, Bound. Value Probl., (2018), Paper No. 139, 19 pp.
- S. Kim, J. Y. Park and Y. H. Kang, Stochastic quasilinear viscoelastic wave equation with degenerate damping and source terms, Comput. Math. Appl., 75(2018), 3987-3994. https://doi.org/10.1016/j.camwa.2018.03.008
- S. Kim, J. Y. Park and Y. H. Kang, Stochastic quasilinear viscoelastic wave equation with nonlinear damping and source terms, Bound. Value Probl., (2018), Paper No. 14, 15 pp.
- M. Kirane and B. Said-Houari, Existence and asymptotic stability of a viscoelastic wave equation with a delay, Z. Angew. Math. Phys., 62(2011), 1065-1082. https://doi.org/10.1007/s00033-011-0145-0
- F. Li, Global existence and blow-up of solutions for a higher-order Kirchhoff-type equation with nonlinear dissipation, Appl. Math. Lett, 17(2004), 1409-1414. https://doi.org/10.1016/j.am1.2003.07.014
- W. Liu and M. Wang, Global nonexistence of solutions with positive initial energy for a class of wave equations, Math. Methods Appl. Sci., 32(2009), 594-605. https://doi.org/10.1002/mma.1054
- S. A. Messaoudi and B. S. Houari, A blow-up result for a higher-order nonlinear Kirchhoff-type hyperbolic equation, Appl. Math. Lett., 20(2007), 866-871. https://doi.org/10.1016/j.aml.2006.08.018
- E. Piskin, On the decay and blow up of solutions for a quasilinear hyperbolic equations with nonlinear damping and source terms, Bound. Value Probl., (2015), 2015:127, 14 pp.
- F. Q. Sun and M. Wang, Global and blow-up solutions for a system of nonlinear hyperbolic equations with dissipative terms, Nonlinear Anal., 64(2006), 739-761. https://doi.org/10.1016/j.na.2005.04.050
- S. T. Wu, Non-existence of global solutions for a class of wave equations with nonlinear damping and source terms, Proc. Roy. Soc. Edinburgh Sect. A, 141(4)(2011), 865-880. https://doi.org/10.1017/S0308210510001125