DOI QR코드

DOI QR Code

Accuracy improvement of injection parameters for optical complex signal generation using optical injection-locked semiconductor laser

광 주입 파장 잠금 반도체 레이저를 이용한 광학 복소 신호 생성시의 주입 매개 변수 정확도 향상

  • Cho, Jun-Hyung (Research Institute of Science and Technology, Hongik University) ;
  • Sung, Hyuk-Kee (Engineering Electronic and Electrical Engineering, Hongik University)
  • Received : 2020.12.23
  • Accepted : 2021.01.25
  • Published : 2021.03.31

Abstract

An injection locking technology of a semiconductor laser is a promising technology to generate optical complex signals by adjusting optical injection parameters. The extraction of the precise injection parameters plays a key role in the generation of the optical complex signal. Rate equations of semiconductor lasers under optical injection are commonly used to map the injection parameters and the corresponding optical complex signal. The accuracy of the generated optical complex signal on the injection parameters is limited since the rate equations require a locking map-based interpolation method. We propose a novel analytic method, namely rate equation-based direct extraction method, to directly calculate the injection parameters without relying on the locking map-based interpolation method. We achieved 103-times improvement of the signal accuracy by using the proposed method compared to locking-map based interpolation method.

광 주입 잠금 반도체 레이저의 주입 매개 변수를 조절하여 광학적 복소 신호를 생성 할 수 있다. 그러므로 정확한 주입 매개 변수의 결정은 광학적 복소 신호 생성 기술에서의 핵심 요소이다. 기존의 주입 매개 변수의 추출 이론은 광 주입 잠금 반도체 레이저의 비율 방정식을 사용하며, 이는 locking map 기반의 보간법을 사용하기 때문에 정확한 주입 매개 변수의 추출에 한계가 있다. 이를 해결하기 위하여 비율 방정식의 새로운 해석법을 제안한다. 제안된 해석법은 비율 방정식을 광학적 복소 신호의 생성에 맞게 수정하여 주입 매개 변수를 직접적으로 도출하는 방법이며, 이를 통하여 보간법을 통한 복소 신호 생성 대비 103 배의 오차 감소를 달성하였다.

Keywords

References

  1. R. Lang, "Injection locking properties of a semiconductor laser," IEEE Journal of Quantum Electronics, vol. 18, no. 6, pp. 976-983, Jun. 1982. https://doi.org/10.1109/JQE.1982.1071632
  2. J. S. Suelzer, T. B. Simpson, P. Devgan, and N. G. Usechak, "Tunable, low-phase-noise microwave signals from an optically injected semiconductor laser with opto-electronic feedback," Optics Letters, vol. 42, no. 16, pp 3181-3184, Aug. 2017. https://doi.org/10.1364/OL.42.003181
  3. Z. Liu and R. Slavik, "Optical Injection Locking: From Principle to Applications," Journal of Lightwave Technology, vol. 38, no. 1, pp. 43-59, Jan. 2020. https://doi.org/10.1109/jlt.2019.2945718
  4. N. H. Zhu, Z. Shi, Z. K. Zhang, Y. M. Zhang, C. W. Zou, Z. P. Zhao, Y. Liu, W. Li, and M. Li, "Directly Modulated Semiconductor Lasers," IEEE Journal of Selected Topics in Quantum Electronics, vol. 24, no. 1, pp. 1-19, Jan.-Feb. 2018.
  5. H. Kalagara, G. A. Smolyakov, and M. Osinski, "Rate Equation Analysis of Q-Modulated Strongly Injection-Locked Whistle-Geometry Ring Lasers," IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, no. 6, pp. 619-627, Nov. 2015. https://doi.org/10.1109/JSTQE.2015.2466681
  6. D. Wang, G. Xia, Y. Hou, W. Yang, E. Jayaprasath, J. Chen, and Z. Wu, "Theoretical Investigation of State Bistability Between Pure-and Mixed-Mode States in a 1550-nm VCSEL Under Parallel Optical Injection," IEEE Access, vol. 6, pp. 19791-19797, Mar. 2018. https://doi.org/10.1109/access.2018.2820678
  7. J. T. Kim, "Analyses of Encryption Method for Chaos Communication Using Optical Injection Locked Semiconductor Lasers," Journal of the Korea Institute of Information and Communication Engineering, vol. 9, no. 4, pp. 811-815, May. 2005.
  8. J. H. Cho, C. H. Cho, and H. K. Sung, "Theoretical Performance Evaluation of Optical Complex Signals Based on Optically Injection-Locked Semiconductor Lasers," IEEE Journal of Selected Topics in Quantum Electronics, vol. 25, no. 6, pp. 1-9, Jun. 2019.
  9. A. H. Nguyen, J. H. Cho, H. J. Bae, and H. K. Sung, "Side-lobe Level Reduction of an Optical Phased Array Using Amplitude and Phase Modulation of Array Elements Based on Optically Injection-Locked Semiconductor Lasers," Photonics, vol. 7, no. 1, pp. 20, Feb. 2020. https://doi.org/10.3390/photonics7010020
  10. Z. Liu, Kakande, B. Kelly, J. O'Carroll, R. Phelan, D. J. Richardson, and R. Slavik, "Modulator-free quadrature amplitude modulation signal synthesis," Nature Communications, vol. 5, no. 1, pp. 5911, Dec. 2014. https://doi.org/10.1038/ncomms6911
  11. C. Henry, N. Olsson, and N. Dutta, "Locking range and stability of injection locked 1.54 ㎛ InGaAsp semiconductor lasers," IEEE Journal of Quantum Electronics, vol. 21, no. 8, pp. 1152-1156, Aug. 1985. https://doi.org/10.1109/JQE.1985.1072787
  12. P. D. Pukhrambam, S. Lee, G. Keiser, and W. Y. Al-Smadi, "Radio-over-fiber transmission using semiconductor laser under weak external light injection," Optical and Quantum Electronics, vol. 48, no. 3, pp. 213, Feb. 2016. https://doi.org/10.1007/s11082-016-0488-z
  13. L. A. Coldren, M. L. Masanovic, and S. W. Corzine, "Spontaneous Emission," in Diode Lasers and Photonic Integrated Circuits, 2nd ed. Hoboken, NJ: John Wiley & Sons, ch. 4, pp. 192-198, 2012.
  14. C. Henry, "Theory of the linewidth of semiconductor lasers," IEEE Journal of Quantum Electronics, vol. 18, no. 2, pp. 259-264, Feb. 1982. https://doi.org/10.1109/JQE.1982.1071522
  15. Y. Shen, G. Gao, Y. Meng, X. Fu, and M. Gong, "Gain-phase modulation in chirped-pulse amplification," Physical Review A, vol. 96, no. 4, pp. 043851, Oct. 2017. https://doi.org/10.1103/physreva.96.043851
  16. J. D. Faires and R. L. Burden, "Solutions of Systems of Nonlinear Equations," in Numerical Methods, 3rd ed. Pacific Grove, CA: Brooks Cole, ch. 10, pp. 416-449, 2003.