DOI QR코드

DOI QR Code

광 위상 공액이 적용된 비대칭 구조의 분산 제어 링크

Asymmetric-type Dispersion-managed Link with Optical Phase Conjugation

  • 이성렬 (목포해양대학교 항해정보시스템학부)
  • Lee, Seong-Real (Division of Navigational Information System, Mokpo National Maritime University)
  • 투고 : 2021.01.19
  • 심사 : 2021.02.26
  • 발행 : 2021.02.28

초록

표준 단일 모드 광섬유가 가지는 색 분산과 비선형 현상에 의한 광 신호 왜곡을 보상할 수 있는 분산 제어와 광 위상 공액이 결합된 링크의 한계인 대칭적 구조를 해결할 수 있는 방법을 제안하였다. 대칭적 구조는 전반 전송 구간과 후반 전송 구간의 중계 구간수, 분산 분포 등등이 광 위상 공액기를 중심으로 대칭되어야 한다는 것을 의미한다. 본 연구에서 제안하는 분산 제어 링크는 광 위상 공액기가 전반의 6개 중계 구간과 후반의 14개 사이에 존재하고, 각 전송 반 구간에서의 평균 중계 구간 당 잉여 분산 (RDPS; residual dispersion per span)이 서로 동일한 구조이다. 제안된 분산 제어 링크에서의 광 신호 왜곡 보상 효과의 분석은 평균 RDPS가 각 전송 반 구간에서 서로 다르게 설정된 링크에서의 결과와의 비교를 통해 이루어졌다. 시뮬레이션 결과 전송 반 구간 사이의 RDPS 평균값의 동일 여부보다 인접한 중계 구간 간 RDPS 편차가 보상에 더 큰 영향을 미치는 것은 확인하였다.

The alternative method for symmetric configuration in optical link consisted of dispersion management and optical phase conjugation for compensating of the distorted optical signals due to chromatic dispersion and nonlinear effects of standard single mode fiber is proposed. The symmetric configuration means number of fiber spans, dispersion distribution in former half section and latter half section, etc should be symmetrical about optical phase conjugator. In dispersion-managed proposed in this research, optical phase conjugator is located after former half section consisted of 6 fiber spans and before latter half section of 14 fiber spans, and the averaged residual dispersion per span (RDPS) of each half section are consistence. The compensation effects of the distorted signals in the proposed link is analyzed by comparing with the results obtained in dispersion-managed link with the unequally averaged RDPS of each half section. From the simulation results, it is confirmed that RDPS deviation between adjacent fiber span has a grater effect on the compensation than the equivalent of the averaged RDPS.

키워드

참고문헌

  1. J. W. Yun, H. H. Lee et al, "Optical Network Infra Technology for Hyper-Connected Society," Electronic and Telecommunications Trends, Vol. 31, No. 1, pp. 99-110, Feb. 2016.
  2. [internet] Available: http://www.dt.co.kr/contents.html?article_no=2018051502102251607002&frommobile=1
  3. S. Waiyapot, S. K. Turitsyn, and V. K. Mezentsev, "Optical regeneration at 40 Gb/s in dispersion-managed transmission lines with in-line synchronous modulators," Journal of Lightwave Technology, Vol. 20, No. 12, pp. 2220-2228, Dec. 2002. https://doi.org/10.1109/JLT.2002.806750
  4. M. D. Pelusi, "WDM signal all-optical precompensation of Kerr nonlinearity in dispersion-managed fibers," IEEE Photonics Technology Letters, Vol. 25, No. 1, pp. 71-74, 2013. https://doi.org/10.1109/LPT.2012.2226440
  5. L. Zhu1, and G. Li, "Folded digital backward propagation for dispersion-managed fiber-optic transmission," Optics Express, Vol. 19, No. 7, pp. 5953-5959, Mar. 2011. https://doi.org/10.1364/OE.19.005953
  6. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. San Francisco:CA, Academic Press, 2001.
  7. M. Morshed, A. J. Lowery, and L. B. Du, "Improving performance of optical conjugation by splitting the nonlinear element," Optics Express, Vol. 21, pp. 4567-4577, 2013. https://doi.org/10.1364/OE.21.004567
  8. I. Sackey, F. D. Ros, J. K. Fischer, T. Richter, M. Jazayerifar, C. Peucheret, K. Petermann, and C. Schubert, "Kerr nonlinearity mitigation: mid-link spectral inversion versus digital backpropagation in 5×28-GBd PDM 16-QAM signal transmission," Journal of Lightwave Technology, Vol. 33, No. 9, pp. 1821-1827, May 2015. https://doi.org/10.1109/JLT.2015.2393152
  9. M. Morshed, L. B. Du, and A. J. Lowery, "Mid-span spectral inversion for coherent optical OFDM systems: fundamental limits to performance," Journal of Lightwave Technology, Vol. 31, No. 1, pp. 58-66, Jan., 2013. https://doi.org/10.1109/JLT.2012.2227942
  10. X. Xiao, C. Yang, S. Gao, and Y. Tian, "Partial compensation of Kerr nonlinearities by optical phase conjugation in optical fiber transmission systems without power symmetry," Optical Communications, Vol. 265, No. 1, pp. 326-330. 2016.
  11. A. Chowdhury and R. J. Essiambre, "Optical phase conjugation and pseudolinear transmission," Optics Letters, Vol. 29, No. 10, pp. 1105-1107, 2014. https://doi.org/10.1364/OL.29.001105
  12. S. R. Lee, "Dispersion-managed links formed of SMFs and DCFs with irregular dispersion coefficients and span lengths," Journal of Information Communication Convergence Engineering, Vol.16, No.2, pp.67-71, June, 2018. https://doi.org/10.6109/JICCE.2018.16.2.67
  13. S. R. Lee, "Compensation for the distorted WDM channels in the long-haul transmission link with the randomly distributed SMF lengths and RDPS," Journal of Advanced Navigation Technology, Vol. 19, No. 4, pp. 323-329, Aug. 2015. https://doi.org/10.12673/jant.2015.19.4.323
  14. S. R. Lee, "Dispersion-managed optical links combined with asymmetrical optical phase conjugation for compensating for distorted WDM signals," Journal of Information and Communication Convergence Engineering, Vol. 14, No. 2, pp. 71-77, Jun. 2016. https://doi.org/10.6109/jicce.2016.14.2.071
  15. H. B. Yim and S..R. Lee, "Compensation for the distorted WDM signals through dispersion-managed optical links combined with non-midway optical phase conjugation," International Journal of Control and Automation, Vol. 11, No. 9, pp.1-10, Nov. 2018.
  16. S. H. Hong and S. R. Lee, "Dispersion-managed link with different numbers of fiber spans and asymmetric distribution of RDPS," Journal of Advanced Navigation Technology, Vol. 23, No. 6, pp. 570-576, Dec. 2019.