DOI QR코드

DOI QR Code

입자 크기별 가공부산물로 제조된 벌크흑연의 기계적 성질

Mechanical Properties of Bulk Graphite using Artificial Graphite Scrap as a Function of Particle Size

  • 이상혜 (금오공과대학교 신소재공학과) ;
  • 이상민 (금오공과대학교 신소재연구소) ;
  • 장원표 (금성테크) ;
  • 노재승 (금오공과대학교 신소재공학과)
  • Lee, Sang Hye (School of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Lee, Sang Min (Advanced Material Research Center, Kumoh National Institute of Technology) ;
  • Jang, Won Pyo (GeumSungTech) ;
  • Roh, Jae Seung (School of Materials Science and Engineering, Kumoh National Institute of Technology)
  • 투고 : 2021.01.06
  • 심사 : 2021.02.15
  • 발행 : 2021.02.28

초록

Bulk graphite is manufactured using graphite scrap as the filler and phenolic resin as the binder. Graphite scrap, which is the by-product of processing the final graphite product, is pulverized and sieved by particle size. The relationship between the density and porosity is analyzed by measuring the mechanical properties of bulk graphite. The filler materials are sieved into mean particle sizes of 10.62, 23.38, 54.09, 84.29, and 126.64 ㎛. The bulk graphite density using the filler powder with a particle size of 54.09 ㎛ is 1.38 g/㎤, which is the highest value in this study. The compressive strength tends to increase as the bulk graphite density increases. The highest compressive strength of 43.14 MPa is achieved with the 54.09 ㎛ powder. The highest flexural strength of 23.08 MPa is achieved using the 10.62 ㎛ powder, having the smallest average particle size. The compressive strength is affected by the density of bulk graphite, and the flexural strength is affected by the filler particle size of bulk graphite.

키워드

참고문헌

  1. Y. S. Ko: Ceramist, 9 (1994) 18.
  2. D. D. L. Chung: J. Mater. Sci., 37 (2002) 1475. https://doi.org/10.1023/A:1014915307738
  3. K. Y. Cho, K. J. Kim, Y. S. Lim, Y. J. Chung and S. H. Chi: Carbon Lett., 7 (2006) 196.
  4. L. Xiaowei, R. Jean-Charles and Y. Suyuan: Nucl. Eng. Des., 227 (2004) 273. https://doi.org/10.1016/j.nucengdes.2003.11.004
  5. G. D. Considine: Van Nostrand's Encyclopedia of Chemistry. 5th ed., Wiley-Interscience, New Jersey, (2005).
  6. N. Cunningham, M. Lefevre, J. P. Dodelet, Y. Thomas and S. Pelletier: Carbon, 43 (2005) 3054. https://doi.org/10.1016/j.carbon.2005.06.045
  7. K. Ohkita and N. Tubokawa: Carbon, 10 (1972) 631. https://doi.org/10.1016/0008-6223(72)90101-7
  8. J. Y. Kim, S. Y. Lee, J. H. Choi and Y. D. Park: J. Kor. Ceram. Soc., 29 (1992) 396.
  9. Y. W. Shin: The J. of thr Korean Soc. for Power Syst. Eng., 9 (2005) 143.
  10. K. Janerka and D. Bartocha: Arch. Foundry Eng, 8 (2008) 55.
  11. A. Roessler and D. Crettenand: Dyes Pigm., 63 (2004) 29. https://doi.org/10.1016/j.dyepig.2004.01.005
  12. C. I. Fan and H. Chen: J. Mater. Sci., 46 (2011) 2140. https://doi.org/10.1007/s10853-010-5050-y
  13. S. M. Lee, D. S. Kang, W. S. Kim and J. S. Roh: Carbon Lett., 15 (2014) 142. https://doi.org/10.5714/CL.2014.15.2.142
  14. Y. S. Han, H. J. Kim, Y. S. Shin, J. K. Park and J. C. Ko: J. Korean Ceram. Soc., 46 (2009) 16. https://doi.org/10.4191/KCERS.2009.46.1.016
  15. D. S. Kang: Ph. D. Dissertation, Change of interfacial structure of natural graphite and phenolic resin as a function of carbonization condition, , Kumoh National Institute of Technology, Gumi, (2018) 80.
  16. J. H. Eom, D. H. Jang, Y. W. Kim, I. H. Song and H. D. Kim: J. Korean Ceram. Soc., 43 (2006) 552. https://doi.org/10.4191/KCERS.2006.43.9.552
  17. J. Y. Kim, S. Y. Lee, J. H. Choi and Y. D. Park: Ceram. Soc., 29 (1992) 396.
  18. S. H. Kim and H. T. Hahn: Adv. Compos. Mater., 15 (2006) 175. https://doi.org/10.1163/156855106777873888