DOI QR코드

DOI QR Code

Hangul Font Dataset for Korean Font Research Based on Deep Learning

딥러닝 기반의 한글 폰트 연구를 위한 한글 폰트 데이터셋

  • Received : 2020.10.28
  • Accepted : 2020.12.05
  • Published : 2021.02.28

Abstract

Recently, as interest in deep learning has increased, many researches in various fields using deep learning techniques have been conducted. Studies on automatic generation of fonts using deep learning-based generation models are limited to several languages such as Roman or Chinese characters. Generating Korean font is a very time-consuming and expensive task, and can be easily created using deep learning. For research on generating Korean fonts, it is important to prepare a Korean font dataset from the viewpoint of process automation in order to keep pace with deep learning-based generation models. In this paper, we propose a Korean font dataset for deep learning-based Korean font research and describe a method of constructing the dataset. Based on the Korean font data set proposed in this paper, we show the usefulness of the proposed dataset configuration through the process of applying it to a deep learning Korean font generation application.

최근 딥러닝에 대한 관심이 증가하면서 이를 이용한 다양한 분야에서 연구가 진행되고 있다. 그러나 딥러닝 기반의 생성 모델을 이용하는 폰트의 자동 생성 연구들은 로마자 및 한자와 같은 몇 언어들에 국한되어 연구되고 있다. 한글 폰트 디자인은 매우 큰 시간과 비용이 들어가는 작업으로, 딥러닝을 이용하면 손쉽게 생성할 수 있다. 한글 폰트를 생성하는 연구는 딥러닝 기반의 생성 모델들과 발맞추기 위해 프로세스 자동화 관점에서 한글 폰트 데이터셋을 준비하는 것이 중요하다. 이를 위하여 본 논문에서는 딥러닝 기반의 한글 폰트 연구를 위한 한글 폰트 데이터셋을 제안하고. 그 데이터셋을 구성하는 방법을 기술한다. 본 논문에서 제안하는 한글 폰트 데이터셋을 기반으로 딥러닝 한글 폰트 생성 어플리케이션에 적용하는 과정을 통해 제안하는 데이터셋 구성의 유용성을 보인다.

Keywords

References

  1. Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review and new perspectives," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.35, No.8, pp.1798-1828, 2013. https://doi.org/10.1109/TPAMI.2013.50
  2. Y. Jiang, Z. Lian, Y. Tang, and J. Xiao, "DCFont: An end-to-end deep chinese font generation system," SIGGRAPH Asia 2017, Technical Briefs, 2017.
  3. Y. Tian, "zi2zi: Master chinese calligraphy with conditional adversarial networks," [Internet] https://github.com/kaonashi-tyc/zi2zi.
  4. J. Choi and S. Hong, "Aspects of the development of Korean font design in the digital era," Journal of Digital Design, Vol.8, No.2, pp.173-182, Apr. 2008. https://doi.org/10.17280/JDD.2008.8.2.017
  5. Korean Publishing Research Institute, Basic research in Hangul Style (in Korean), Korean Publishing Research Institute, 1990.
  6. Y. LeCun, C. Cortes, and C. Burges, "The mnist database of handwritten digit," [Internet] http://yann.lecun.com/exdb/mnist/.
  7. A. Krizhevsky, V. Nair, and G. Hinton, "The CIFAR-10 dataset," [Internet] https://www.cs.toronto.edu/-kriz/ cifar.html.
  8. S. Azadi, M. Fisher, V. Kim, Z. Wang, E. Shechtman, and T. Darrell, "Multi-Content GAN for Few-Shot Font Style Transfer," IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.7564-7573, 2018.
  9. Y. Gao, Y. Guo, Z. Lian, Y. Tang, and J. Xiao, "Artistic glyph image synthesis via one-stage few-shot learning," ACM Transactions on Graphics, Vol.38, No.6, 2019.
  10. FontForge, Spline font Database [Internet], https://fontforge.org/docs/techref/sfdformat.html.
  11. The Unicode Consortium, The Unicode Standard [Internet], https://www.unicode.org/standard/standard.html.
  12. H. Min, A. Hassan, J. Suk. and J. Choi, "Font image dataset auto generating module based on unicode (in Korean)," in Proc. Korea Computer Congress 2020 (KCC2020), Vol.46, No.01, pp.1818-1820, 2019.
  13. P. Isola, J.-Y. Zhu, T. Zhou, and A. Efros, "Image-to-image translation with conditional adversarial networks," in Proceedings of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2017.
  14. D. H. Ko, A. Hassan, J. Suk, and J. Choi, "Korean font synthesis with GANs," in International Journal of Computer Theory and Engineering, Vol.12, No.4, pp.92-96, 2020. https://doi.org/10.7763/IJCTE.2020.V12.1270