DOI QR코드

DOI QR Code

Deposition of an Intermediate Layer on an Ultrapermeable Ceramic Support by Evaporation-Driven Self-Assembly

증발유도 자기조립을 이용한 고투과도 세라믹 지지체의 중간층 제조

  • Kwon, Hyuk Taek (Department of Chemical Engineering, Pukyong National University) ;
  • Kim, Jinsoo (Department of Chemical Engineering, Kyung Hee University)
  • Received : 2021.02.05
  • Accepted : 2021.02.18
  • Published : 2021.02.28

Abstract

In this study, we developed an evaporation-driven self-assembly coating method for an ceramic intermediate layer on an ultrapermeable ��-Al2O3 support with large pore size of ~1.5 ㎛. The method led to the formation of a ceramic intermediate layer with higher surface homogeneity and less surface roughness than the conventional dip-coating method. A mesoporous ��-Al2O3 layer was deposited on the support to evaluate support quality. A supported ��-Al2O3 membrane was defect-free even without repeated coating. Furthermore, the membrane showed 2.3 times higher nitrogen permeance than one prepared on a macroporous support with pore size range of 100~200 nm, which is widely used for ceramic membrane coating.

본 논문에서는 ~1.5 ㎛의 기공 크기를 가지는 고투과도 알파 알루미나 지지체 위에 도포된 서스펜션의 증발유도 자기조립 현상을 이용하여 중간층을 형성하는 새로운 코팅 방식을 소개한다. 새로운 코팅 방법으로 만들어진 중간층은 일반적으로 사용되는 담지법으로 코팅된 중간층과 비교하여 표면거칠기와 불균일도가 낮아 코팅에 적합하였다. 복합막 지지체로서의 평가를 위해 제조된 지지체는 감마 알루미나 복합막 제조에 사용되었다. 메조 기공을 가지는 감마 알루미나 복합막은 반복코팅 없이도 매크로 기공 크기의 결함이 존재하지 않았으며 일반적으로 널리 사용되는 100~200 nm의 기공 크기를 가지는 지지체로부터 만들어진 같은 두께의 복합막과 비교하여 2.3배 이상의 높은 질소투과도를 보였다.

Keywords

References

  1. K. Shqau, M. L. Mottern, D. Yu, and H. Verweij, "Preparation and properties of porous α-Al2O3 membrane supports", J. Am. Ceram. Soc., 89, 1790 (2006). https://doi.org/10.1111/j.1551-2916.2006.01037.x
  2. P. M. Biesheuvel and H. Verweij, "Design of ceramic membrane supports: Permeability, tensile strength and stress", J. Membr. Sci., 156, 141 (1999). https://doi.org/10.1016/S0376-7388(98)00335-4
  3. A. Nijmeijer, C. Huiskes, N. M. Sibelt, H. Kruidhof, and H. Verweij, Centrifugal casting of tubular membrane supports, Am. Ceram. Soc. Bull., 77, 95 (1998).
  4. L. Bergstrom, C. H. Schilling, and I. A. Aksay, Consolidation behavior of flocculated alumina suspensions, J. Am. Ceram. Soc., 75, 3305 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb04426.x
  5. A. J. Burggraaf and L. Cot, Fundamentals of Inorganic Membrane Science and Technology, 1st Ed., Elsevier (1996).
  6. Y. Gu and S. T. Oyama, Ultrathin, hydrogen-selective silica membranes deposited on alumina-graded structures prepared from size-controlled boehmite sols, J. Membr. Sci., 306, 216 (2007). https://doi.org/10.1016/j.memsci.2007.08.045
  7. X. Ma, P. Kumar, N. Mittal, A. Khlyustova, P. Daoutidis, K. A. Mkhoyan, and M. Tsapatsis, Zeolitic imidazolate framework membranes made by ligand-induced permselectivation, Science, 361, 1008 (2018). https://doi.org/10.1126/science.aat4123
  8. Z. Xie, J. Yang, J. Wang, J. Bai, H. Yin, B. Yuan, J. Lu, Y. Zhang, L. Zhou, and C. Duan, Deposition of chemically modified α-Al2O3 particles for high performance ZIF-8 membrane on a macroporous tube, Chem. Commun., 48, 5977 (2012). https://doi.org/10.1039/c2cc17607f
  9. C. Brinker, G. Frye, A. Hurd, and C. Ashley, Fundamentals of sol-gel dip coating, Thin Solid Films, 201, 97 (1991). https://doi.org/10.1016/0040-6090(91)90158-T
  10. Y.-J. Kim, S.-J. Kim, J. Kim, Y.-H. Cho, P.-S. Lee, Y.-I. Park, H.-B. Park, and S.-E. Nam, Fabrication and characterization of alumina hollow fiber ultrafiltration membrane, Membr. J., 28, 21 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.1.21
  11. H. T. Kwon, J. Kim, and M. R. Othman, Characteristics of alumina membranes prepared from different metal-organic compounds, Synth. React. Inorg. M., 42, 928 (2012). https://doi.org/10.1080/15533174.2011.618481