DOI QR코드

DOI QR Code

Formation of Mesoporous Membrane by Reverse Thermally induced Phase Separation (RTIPS) Process Using Flash Freezing

Mesoporous 막 제조를 위한 급냉법에 의한 역 열유도상전이공정

  • Received : 2021.01.12
  • Accepted : 2021.02.15
  • Published : 2021.02.28

Abstract

Mesoporous polystyrene (PS) and polyethersulfone (PES) membranes have been fabricated by reverse-thermally induced phase separation (RTIPS) process, using flash freezing. The mesoporous pores can be created by the nano-scaled phase separation induced by the formation and growth of solvent crystals in the dope solution in RTIPS process. RTIPS process has been characterized through analysis on the enthalpy change in the solvent of the dope solution, the morphology of the membrane fabricated with different polymer content, and the pore size distribution and its standard deviation of pore size of the membrane with polymer content via DSC, SEM, and BET, respectively. It is found that the kinetic aspect of the dope solution, i.e., the crystallization of solvent is a crucial factor to determine the structure of membrane fabricated in RTIPS rather than the thermodynamic aspect of the dope solution.

급냉법에 의한 역 열유도상전이(RTIPS) 공정을 사용하여 mesoporous polystyrene (PS), polyethersulfone (PES) 막을 제조하였다. 급냉법에 의한 RTIPS 공정은 급냉 및 승온 시 도포 용액 내 용매 분자들의 결정 생성 및 성장을 통해 나노 규모의 상전이를 야기시켜 mesoporous 기공들을 형성된다. 시차주사열량계(TA: DSC) 사용해 측정된 사용 용매 dimethylformamide (DMF)와 여러 고분자 함량의 고분자용액들에 대한 엔탈피 변화와 주사현미경(SEM)을 사용하여 측정한 고분자함량에 따른 제조된 막 구조, 그리고 비표면적 분석기(BET) 사용하여 측정한 고분자 함량에 따라 제조된 막의 기공크기분포 및 표준편차 분석을 통해 RTIPS 공정 시 상전이 거동을 살펴보았다

Keywords

References

  1. P. J. Flory, "Thermodynamics of high polymer solutions", J. Chem. Phys., 9, 660 (1941). https://doi.org/10.1063/1.1750971
  2. M. L. Huggins, "Solution of long-chain compounds", J. Chem. Phys., 9, 440 (1941). https://doi.org/10.1063/1.1750930
  3. M. G. Buonomenna, A. Fogoli, J. C. Jansen, and E. Drioli, "Preparation of asymmetric PEEKWC flat membranes with different microstructures by wet phase inversion", J. Appl. Polym. Sci., 92, 576 (2004). https://doi.org/10.1002/app.20042
  4. W.-L. Chou and M.-C. Yang, "Effect of coagulant temperature and composition on surface morphology and mass transfer properties of cellulose acetate hollow fiber membranes", Polym. Adv. Technol., 16, 524 (2005). https://doi.org/10.1002/pat.617
  5. D. R. Lloyd, K. E. Kinzer, and H. S. Tseng, "Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation", J. Membr. Sci., 52, 239 (1990). https://doi.org/10.1016/S0376-7388(00)85130-3
  6. H. Matsuyama, T. Maki, M. Teramoto, and K. Asano, "Effect of polypropylene molecular weight on porous membrane formation by thermally induced phase separation", J. Membr. Sci., 204, 323 (2002). https://doi.org/10.1016/S0376-7388(02)00056-X
  7. S. Samitsu, R. Zhang, X. Peng, M. R. Krishnan, Y. Fujii, and I. Ichnose, "Flash freezing route to mesoporous polymer nanofibre networks", Nat. Commun., 4, 2653 (2013). https://doi.org/10.1038/ncomms3653
  8. M. Liu, Y.-M. Wei, Z.-L. Xu, R.-Q. Guo, and L.-B. Zhao, "Preparation of characterization of polyethersulfone microporous membrane via thermally induced phase separation with low critical solution temperature system", J. Membr. Sci., 437, 169 (2013). https://doi.org/10.1016/j.memsci.2013.03.004
  9. N. N. Smirnova, L. Y. Tsvetkova, T. A. Bykova and Y. Marcus, "Thermodynamic properties of N,N-dimethylformamide and N,N-dimethylacetamide", J. Chem. Thermodyn., 39, 1508 (2007). https://doi.org/10.1016/j.jct.2007.02.009
  10. J. H. Hollomon and D. Turnbull, "Nucleation", Prog. Metal Phys., 4, 333 (1953). https://doi.org/10.1016/0502-8205(53)90020-3
  11. J. H. Hollomon, and D. Turnbull, "Nucleation", Prog. Metal Phys., 4, 333 (1953). https://doi.org/10.1016/0502-8205(53)90020-3
  12. G. Darko, S. Chigome, S. Lillywhite, Z. Tshentu, J. Darkwa, and N. Torto, "Sorption of toxic metal ions in aqueous environment using electro-spun polystyrene fibers incorporating diazole ligands", Water. SA., 39, 39 (2013).