DOI QR코드

DOI QR Code

SOME NEW APPLICATIONS OF S-METRIC SPACES BY WEAKLY COMPATIBLE PAIRS WITH A LIMIT PROPERTY

  • Afra, J. Mojaradi (Department of Pure Mathematics, Faculty of Mathematical Sciences, Lahijan Branch, Islamic Azad University Lahijan) ;
  • Sabbaghan, M. (Department of Pure Mathematics, Faculty of Mathematical Sciences, Lahijan Branch, Islamic Azad University Lahijan)
  • 투고 : 2018.12.09
  • 심사 : 2020.12.02
  • 발행 : 2021.02.28

초록

In this note we use a generalization of coincidence point(a property which was defined by [1] in symmetric spaces) to prove common fixed point theorem on S-metric spaces for weakly compatible maps. Also the results are used to achieve the solution of an integral equation and the bounded solution of a functional equation in dynamic programming.

키워드

참고문헌

  1. M. Aamri & D. El Moutawakil: Common fixed under contractions in symmetric spaces. Appl Mathematics E-notes 3 (2003), 156-162.
  2. R. Baskaran & PV. Subrahmanyam: A note on the solution of a class of functional equations. Appl. Anal. 22 (1986), 235-241. https://doi.org/10.1080/00036818608839621
  3. R. Bellman & ES. Lee: Functional equations in dynamic programming. Aequ. Math. 17 (1978), 1-18. https://doi.org/10.1007/BF01818535
  4. BC. Dhage: Generalized metric space and mapping with fixed point. Bull. Calcutta Math. Soc. 84 (1992), 329-336.
  5. S. Manro, S. Bhatia, S. Kumar & C. Vetro: A common fixed point theorem for two weakly compatible pairs in G-metric spaces using the property E.A.. Fixed Point Theory Appl. 2013 (2013), 41.
  6. J. Matkowski: Fixed point theorems for mappings with a contractive iterate at a point. Proc. Am. Math. Soc. 62 (1977), 344-348. https://doi.org/10.1090/S0002-9939-1977-0436113-5
  7. J. Mojaradi Afra: Fixed point type theorem in S-metric spaces. Theory of Approximation and App. 10 (2016), no. 2, 33-41.
  8. Z. Mustafa & B. Sims: A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 7 (2006), 289-297.
  9. S. Sedghi & N.V. Dung: Fixed point theorems on S-metric spaces. Mat. Vesnik. 66 (2014), 113-124.
  10. S. Sedghi, N. Shobe & A. Aliouche: A generalization of fixed point theorem in S-metric spaces. Mat. Vesnik 64 (2012), 258-266.