SOME NEW APPLICATIONS OF S-METRIC SPACES BY WEAKLY COMPATIBLE PAIRS WITH A LIMIT PROPERTY

J. Mojaradi Afra ${ }^{a}$ and M. Sabbaghan ${ }^{\text {b,* }}$

Abstract

In this note we use a generalization of coincidence point(a property which was defined by [1] in symmetric spaces) to prove common fixed point theorem on S-metric spaces for weakly compatible maps. Also the results are used to achieve the solution of an integral equation and the bounded solution of a functional equation in dynamic programming.

1. Introduction

Fixed point theorems play a principal role in solving integral equations [2, 3] arising in several areas of mathematics and other related subjects. In 1992, Dhage [4] offered the concept of a D-metric space. Later on, in 2006, Mustafa and Sims [8] showed that most of the results concerning Dhage's D-metric space are invalid. Therefore, they introduced a new notion of a generalized metric space, called G metric space. Recently, Sedghi et al. [10] introduced the concept of S-metric space and some of their properties. In this note, we use a geralization of coincidence point on S-metric spaces to find a procedure to prove some type of fixed point theorems and applying its consequences to get a solution for an integral equation and a functional equation in dynamic programming.

2. Basic Concepts

First we recall some notions, lemmas and examples which will be useful later (see [10]):

[^0]Definition 2.1. Let X be a nonempty set. An S-metric on X is a function S : $X^{3} \rightarrow[0, \infty)$ which satisfies the following conditions for all $x, y, z, a \in X$
(i) $S(x, y, z) \geq 0$,
(ii) $S(x, y, z)=0$ if and only if $x=y=z$,
(iii) $S(x, y, z) \leq S(x, x, a)+S(y, y, a)+S(z, z, a)$.

The set X with an S-metric is called an S-metric space.
The standard examples of S-metric spaces are:
(a) Let X be any normed space, then $S(x, y, z)=\|y+z-2 x\|+\|y-z\|$ is an S-metric on X.
(b) Let (X, d) be a metric space, then $S_{d}(x, y, z)=d(x, z)+d(y, z)$ is an S-metric on X. This S-metric is called the usual S-metric on X.
(c) Another S-metric on (X, d) is $S_{d}^{\prime}(x, y, z)=d(x, y)+d(x, z)+d(y, z)$ which is symmetric with respect to the argument.
(d) Let $X=[0,+\infty)$, then

$$
S(x, y, z)=\left\{\begin{aligned}
0 & \text { if } x=y=z, \\
\max \{x, y, z\} & \text { otherwise }
\end{aligned}\right.
$$

is an S-metric. This S-metric can not be defined by a usual S-metric. We call S the maximum S-metric on X.

In this note, we will often use the following important facts.
Lemma 2.1 ([10]). In any S-metric space (X, S), we have $S(x, x, y)=S(y, y, x)$ for all $x, y \in X$.

Definition 2.2. A sequence $\left\{x_{n}\right\}$ in X converges to x if $S\left(x_{n}, x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$.
We denote this by $\lim _{n \rightarrow \infty} x_{n}=x$.
Definition 2.3. A sequence $\left\{x_{n}\right\}$ in an S-metric space (X, S) is called a Cauchy sequence if $S\left(x_{n}, x_{n}, x_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$.

Lemma 2.2 ([10]). Let (X, S) be an S-metric space then,
a. The limit of a sequence in an S-metric space is unique.
b. Every convergent sequence in an S-metric space is a Cauchy sequence.
c. If there exist sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ such that $\lim _{n \rightarrow \infty} x_{n}=x$ and $\lim _{n \rightarrow \infty} y_{n}=$ y, then $\lim _{n \rightarrow \infty} S\left(x_{n}, x_{n}, y_{n}\right)=S(x, x, y)$.

There exists a natural topology on an S-metric spaces. First, let us define the notion of (open) ball.

Definition 2.4. Let (X, S) be an S-metric space. For $r>0$ and $x \in X$ we define a ball with center x and radius r as follows:

$$
B_{s}(x, r)=\{y \in X: S(y, y, x)<r\}
$$

This is a quite different concept of a ball in a usual metric space. We have:
Example 2.1. Let $S_{d}(x, y, z)=d(x, z)+d(y, z)$ be the usual S-metric on (X, d) and let $x_{0} \in X$. Then:

$$
\begin{aligned}
B_{s}\left(x_{0}, 2\right)=\left\{y \in X: S\left(y, y, x_{0}\right)<2\right\} & =\left\{y \in X: 2 d\left(y, x_{0}\right)<2\right\} \\
& =\left\{y \in X: d\left(y, x_{0}\right)<1\right\}=B_{d}\left(x_{0}, 1\right)
\end{aligned}
$$

By using this notion of a ball, we can introduce the standard topology on S-metric space.

Definition 2.5. The S-metric space (X, S) is said to be complete if every Cauchy sequence converges.

We have the following result:
Lemma 2.3 ([7]). Any S-metric space is Hausdorff.
Remark 2.1. We have:
$x_{n} \rightarrow x$ in (X, d) if and only if $d\left(x_{n}, x\right) \rightarrow 0$, if and only if $S_{d}\left(x_{n}, x_{n}, x\right)=2 d\left(x_{n}, x\right) \rightarrow$ 0 , that is, $x_{n} \rightarrow x$ in $\left(X, S_{d}\right)$.

Definition 2.6 ([10]). Let (X, S) be an S-metric space. A self-map $T: X \rightarrow X$ is called a contraction map if there exists a constant $0 \leq k<1$ such that

$$
S(T x, T x, T y) \leq k S(x, x, y), \quad \text { for all } \quad x, y \in X
$$

Theorem 2.1 ([10]). Let (X, S) be a complete S-metric space and $T: X \rightarrow X$ be a contraction map. Then, F has a unique fixed point.

Definition 2.7 ([1]). Let L and T be two self-maps on a S-metric space (X, S). Then, the pair (L, T) is said to be weakly compatible if they commute at their coincidence points, that is, if $L u=T u$ for some $u \in X$, then $T L u=L T u$.

Definition 2.8 ([5]). Let L and T be two self-maps on an S-metric space (X, S). We say the pair (L, T) generalize the coincidence point if there exists a sequence $\left\{x_{n}\right\}$ in X such that $\lim _{n \rightarrow+\infty} L x_{n}=\lim _{n \rightarrow+\infty} T x_{n}=t$, for some $t \in X$. We call it Limit Property. We were mentioned that, this property had called by [1] (E.A.).

The following examples are from [5]:
Example 2.2. Let $X=[2,+\infty)$. Define $L, T: X \rightarrow X$ by $L(x)=2 x+1$ and $T(x)=x+1$ for all $x \in X$. Suppose that the property E.A. holds. Then there exists a sequence $\left\{x_{n}\right\}$ in X such that $\lim _{n \rightarrow+\infty} L x_{n}=\lim _{n \rightarrow+\infty} T x_{n}=t$ for some $t \in X$. It follows that $\lim _{n \rightarrow+\infty} x_{n}=\frac{t-1}{2}$ and $\lim _{n \rightarrow+\infty} x_{n}=t-1$ and so, by uniqueness of limit, $t=1$ but $t \notin X$. Therefore, L and T do not satisfy the Limit Property.

Example 2.3. Let $X=[0,+\infty)$. Define $L, T: X \rightarrow X$ by $L(x)=\frac{3}{4} x$ and $T(x)=\frac{x}{4}$ for all $x \in X$. Consider the sequence $x_{n}=\left\{\frac{1}{n}\right\}_{n \in \mathbb{N}}$ in X. Clearly, $\lim _{n \rightarrow+\infty} L x_{n}=$ $\lim _{n \rightarrow+\infty} T x_{n}=0 \in X$, so L and T satisfy the Limit Property.

Let the nondecreasing function $\phi:[0,+\infty) \rightarrow[0,+\infty)$ satisfies following properties (see [6]):
(M1) $\lim _{n \rightarrow+\infty} \phi^{n}(t)=0$, for all $t \in(0,+\infty)$,
(M2) $\phi(t)<t$ for all $t \in(0,+\infty)$,
(M3) $\quad \phi(0)=0$.
The set of all functions such as ϕ is denoted by Φ.

3. Main Results

The following theorem is our main result :
Theorem 3.1. Let (X, S) be an S-metric space and $A, B, H, T: X \rightarrow X$ be four self-mappings such that:
(a) $S(A x, A x, B y) \leq \phi(\max \{S(H x, H x, T y), S(H x, H x, B y), S(T y, T y, B y)\})$, for all $x, y \in X$ and $\phi \in \Phi$,
(b) $B(X) \subseteq H(X)$ and $A(X) \subseteq T(X)$,
(c) (A, H) or (B, T) satisfies the Limit Property,
(d) $A(X), B(X), H(X)$ or $T(X)$ is a closed subset of X.

Then (A, H) and (B, T) have a coincidence point. Further, if (A, H) and (B, T) are weakly compatible, then A, B, H and T have a unique common fixed point in X.

Proof. Suppose (B, T) satisfies the Limit Property. Then there exists a sequence $\left\{x_{n}\right\}$ in X such that $\lim _{n \rightarrow+\infty} B x_{n}=\lim _{n \rightarrow+\infty} T x_{n}=t$, for some $t \in X$. Since $B(X) \subseteq H(X)$, there exists a sequence $\left\{y_{n}\right\}$ in X such that $B x_{n}=H y_{n}$. Hence
$\lim _{n \rightarrow+\infty} H y_{n}=t$. We will show that $\lim _{n \rightarrow+\infty} A y_{n}=t$. We have:

$$
\begin{aligned}
& S\left(A y_{n}, A y_{n}, B x_{n}\right) \\
& \leq \phi\left(\max \left\{S\left(H y_{n}, H y_{n}, T x_{n}\right), S\left(H y_{n}, H y_{n}, B x_{n}\right), S\left(T x_{n}, T x_{n}, B x_{n}\right)\right\}\right),
\end{aligned}
$$

so,

$$
\begin{aligned}
& \max \left\{S\left(H y_{n}, H y_{n}, T x_{n}\right), S\left(H y_{n}, H y_{n}, B x_{n}\right), S\left(T x_{n}, T x_{n}, B x_{n}\right)\right\} \\
& =\left\{\begin{array}{l}
S\left(H y_{n}, H y_{n}, T x_{n}\right) \text { or } \\
S\left(H y_{n}, H y_{n}, B x_{n}\right) \text { or } \\
S\left(T x_{n}, T x_{n}, B x_{n}\right) .
\end{array}\right.
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& S\left(A y_{n}, A y_{n}, B x_{n}\right) \\
& \leq \phi\left(\max \left\{S\left(H y_{n}, H y_{n}, T x_{n}\right), S\left(H y_{n}, H y_{n}, B x_{n}\right), S\left(T x_{n}, T x_{n}, B x_{n}\right)\right\}\right) \\
& =\left\{\begin{array}{cc}
\phi\left(S\left(H y_{n}, H y_{n}, T x_{n}\right)\right) & \text { or } \\
\phi\left(S\left(H y_{n}, H y_{n}, B x_{n}\right)\right) & \text { or } \\
\phi\left(S\left(T x_{n}, T x_{n}, B x_{n}\right)\right) .
\end{array}\right.
\end{aligned}
$$

Assume that $S\left(A y_{n}, A y_{n}, B x_{n}\right) \leq \lim _{n \rightarrow+\infty} S\left(H y_{n}, H y_{n}, T x_{n}\right)$. Since $\phi(t) \leq t$ for all $t \in[0, \infty)$, then, by taking limit we have:

$$
\lim _{n \rightarrow+\infty} S\left(A y_{n}, A y_{n}, B x_{n}\right) \leq \lim _{n \rightarrow+\infty} S\left(H y_{n}, H y_{n}, T x_{n}\right),
$$

by Lemma 2.2, $\lim _{n \rightarrow+\infty} S\left(H y_{n}, H y_{n}, T x_{n}\right)=S(t, t, t)=0$, that is,

$$
\lim S\left(A y_{n}, A y_{n}, B x_{n}\right)=0
$$

The above equality holds similarly for other cases.
By Definition 2.1(iii) and Lemma 2.1, we have:

$$
\begin{aligned}
S\left(A y_{n}, A y_{n}, t\right) & \leq 2 S\left(A y_{n}, A y_{n}, B x_{n}\right)+S\left(t, t, B x_{n}\right) \\
& =2 S\left(A y_{n}, A y_{n}, B x_{n}\right)+S\left(B x_{n}, B x_{n}, t\right) .
\end{aligned}
$$

Now by taking limit and using third part of Lemma 2.2 we have, $\lim S\left(A y_{n}, A y_{n}, t\right)=$ 0 , hence by Definition 2.2, $\lim _{n \rightarrow+\infty} A y_{n}=t$. That is,

$$
\lim _{n \rightarrow+\infty} A y_{n}=\lim _{n \rightarrow+\infty} B x_{n}=\lim _{n \rightarrow+\infty} H y_{n}=\lim _{n \rightarrow+\infty} T x_{n}=t .
$$

Suppose that $H(X)$ is a closed subset of X, then, $t=H u$ for some $u \in X$. We show that $A u=H u=t$. From (a), we have:
$S\left(A u, A u, B x_{n}\right) \leq \phi\left(\max \left\{S\left(H u, H u, T x_{n}\right), S\left(H u, H u, B x_{n}\right), S\left(T x_{n}, T x_{n}, B x_{n}\right)\right\}\right)$.

Without loss of generality, assume that
$\phi\left(\max \left\{S\left(H u, H u, T x_{n}\right), S\left(H u, H u, B x_{n}\right), S\left(T x_{n}, T x_{n}, B x_{n}\right)\right\}\right) \leq \phi\left(S\left(H u, H u, T x_{n}\right)\right)$,
then,

$$
\begin{aligned}
S\left(A u, A u, B x_{n}\right) & \leq \phi\left(\max \left\{S\left(H u, H u, T x_{n}\right), S\left(H u, H u, B x_{n}\right), S\left(T x_{n}, T x_{n}, B x_{n}\right)\right\}\right) \\
& \leq \phi\left(S\left(H u, H u, T x_{n}\right)\right) \\
& \leq S\left(H u, H u, T x_{n}\right)
\end{aligned}
$$

by taking limit, we have:

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} S\left(A u, A u, B x_{n}\right) & \leq \lim _{n \rightarrow+\infty} S\left(H u, H u, T x_{n}\right) \\
& \xlongequal{\text { Lemma2.1 }} \lim _{n \rightarrow+\infty} S\left(T x_{n}, T x_{n}, H u\right) \\
& =\lim _{n \rightarrow+\infty} S\left(T x_{n}, T x_{n}, t\right) \\
& \stackrel{\text { Lemma2. }}{=} \lim _{n \rightarrow+\infty} S(t, t, t)=0,
\end{aligned}
$$

Hence, $\lim _{n \rightarrow+\infty} S\left(A u, A u, B x_{n}\right)=0$. Now, observe that

$$
\begin{aligned}
S(A u, A u, t) & \leq S\left(A u, A u, B x_{n}\right)+S\left(A u, A u, B x_{n}\right)+S\left(t, t, B x_{n}\right) \\
& =2 S\left(A u, A u, B x_{n}\right)+S\left(B x_{n}, B x_{n}, t\right)
\end{aligned}
$$

by taking limit and the fact that $\lim _{n \rightarrow+\infty} S\left(B x_{n}, B x_{n}, t\right)=S(t, t, t)=0$, we have, $S(A u, A u, t)=0$, therefore $A u=t$.

Hence, u is a coincidence point of the pair (A, H). Since $A(X) \subseteq T(X)$, there exists $v \in X$ such that $A u=T v$. We claim that $T v=B v$. Suppose that $T v \neq B v$, by hypothesis (a) and by (M2), we have:

$$
\begin{aligned}
S(A u, A u, B v) & \leq \phi(\max \{S(H u, H u, T v), S(H u, H u, B v), S(T v, T v, B v)\}) \\
& =\phi(\max \{0, S(A u, A u, B v), S(A u, A u, B v)\}) \\
& =\phi(S(A u, A u, B v)) \\
& <S(A u, A u, B v)
\end{aligned}
$$

This is a contradiction. Hence $A u=B v$ and $T v=B v$. So (B, T) has a coincidence point. Therefore, we have $B v=T v=H u=A u$.
Now, if B and T are weakly compatible, then we have $B T v=T B v=T T v=B B v$ and the weak compatibility of A and H implies that $A H u=H A u$. Hence, $A A u=$ $A H u=H A u=H H u$. We show that $A u$ is a common fixed point of A, B, H and
T. Suppose that $A A u \neq A u$. By hypothesis (a) and by (M2), we have:

$$
\begin{aligned}
S(A A u, A A u, A u) & =S(A A u, A A u, B v) \\
& \leq \phi(\max \{S(H A u, H A u, T v), S(H A u, H A u, B v), S(T v, T v, B v)\}) \\
& =\phi(\max \{S(A A u, A A u, B v), S(A A u, A A u, B v), S(B v, B v, B v)\} \\
& =\phi(\max \{S(A A u, A A u, B v), S(A A u, A A u, B v), 0\} \\
& =\phi(S(A A u, A A u, B v)) \\
& <S(A A u, A A u, B v) .
\end{aligned}
$$

This is a contradiction. Hence, $A u=A A u=B v$. Therefore, $A u=A A u=H A u$ is a common fixed point of A and H. By a similar argument, $B v$ is a common fixed point of B and T. Since $A u=B v$, we deduce that $A u$ is a common fixed point of A, B, H and T. Only uniqueness of common fixed point has remained. Suppose that w and z are two different common fixed points of A, B, H and T, then, by hypothesis (a) and by (M2), we have:

$$
\begin{aligned}
S(w, w, z) & =S(A w, A w, B z) \\
& \leq \phi(\max \{S(H w, H w, T z), S(H w, H w, B z), S(T z, T z, B z)\}) \\
& =\phi(\max \{S(w, w, z), S(w, w, z), S(z, z, z)\}) \\
& =\phi(S(w, w, z)) \\
& <S(w, z, z),
\end{aligned}
$$

which is a contradiction. Hence, $w=z$. Therefore, A, B, H and T have a unique common fixed point.

By taking $H=T$ in Theorem 3.1, the results for three self-mappings A, B and T are satisfied. We have the following corollary:

Corollary 3.1. Let (X, S) be an S-metric space and $A, B, H: X \rightarrow X$ be three self mappings such that:
(a) $S(A x, A x, B y) \leq \phi(\max \{S(H x, H x, H y), S(H x, H x, B y), S(H y, H y, B y)\})$, where $\phi \in \Phi$, for all $x, y \in X$.
(b) $A(X) \subseteq H(X)$ and $B(X) \subseteq H(X)$,
(c) (A, H) or (B, H) satisfies the Limit Property,
(d) $A(X), B(X)$ or $H(X)$ is a closed subset of X.

Then the pairs (A, H) and (B, H) have a coincidence point. Further, if (A, H) and
(B, H) are weakly compatible, then A, B and H have a unique common fixed point in X.

Example 3.1. Equip $X=[1,+\infty]$ with the maximum S-metric. Define A, B, H : $X \rightarrow X$ by $A x=x, B x=2 x-1$ and $H x=x^{2}$ for all $x \in X$ and $\phi:[0,+\infty) \rightarrow$ $[0,+\infty)$ by $\phi(t)=t$ for all $t \geq 0$. The pair (A, H) satisfies the Limit Property. Also, the hypotheses (b) and (d) of Corollary 3.1 hold trivially. We have:

$$
\begin{gathered}
S(A x, A x, B y)=\left\{\begin{aligned}
0 & \text { if } x=2 y-1 \\
2 y-1 & \text { if } x<2 y-1 \\
x & \text { if } 2 y-1<x
\end{aligned}\right. \\
S(H x, H x, H y)= \begin{cases}y^{2} & \text { if } x<y \\
x^{2} & \text { if } y<x \\
0 & \text { if } x=y\end{cases} \\
S(H x, H x, B y)=\left\{\begin{aligned}
x^{2} & \text { if } 2 y-1<x^{2} \\
2 y-1 & \text { if } x^{2}<2 y-1 \\
0 & \text { if } x^{2}=2 y-1
\end{aligned}\right. \\
S(H y, H y, B y)=\left\{\begin{aligned}
0 & \text { if } y=1 \\
y^{2} & \text { if } y \neq 1
\end{aligned}\right.
\end{gathered}
$$

So for $x<2 y-1, x<y, x^{2}<2 y-1, y \neq 1$, we have:

$$
2 y-1 \leq \max \left\{y^{2}, 2 y-1\right\}=y^{2}
$$

For $x<2 y-1, x<y, 2 y-1<x^{2}$ and $y \neq 1$, we have:

$$
2 y-1 \leq \max \left\{y^{2}, x^{2}\right\}=y^{2}
$$

For $y<x, 2 y-1<x, y \neq 1$, we have:

$$
x \leq \max \left\{x^{2}, y^{2}\right\}=x^{2}
$$

So, the inequality (a) in Corollary 3.1 is correct(other cases are trivial). Hence, the pairs (B, H) and (A, H) have a coincidence point. In addition, since (B, H) and (A, H) are weakly compatible, so A, B and H have the unique common fixed point 1.

The major result of this paper is finding a solution for the following integral equation by applying Corollary 3.1.
Let $X=[0,1]$ and $C(X)$ be the space of all the real valued continuous functions defined on X. Also, suppose that the S-metric on this space is as follows:

$$
S(x, y, z)=\sup _{t \in X}|x(t)-z(t)|+\sup _{t \in X}|y(t)-z(t)|, \quad \text { for all } \quad x, y, z \in C(X)
$$

Clearly $(\mathrm{C}(\mathrm{X}), \mathrm{S})$ is a complete S-metric space.
Let $p: X \times \mathbb{R} \rightarrow \mathbb{R}$ and $q: X \times X \times \mathbb{R} \rightarrow \mathbb{R}$ be two continuous functions and consider the following integral equation:

$$
\begin{equation*}
p(t, x(t))=\int_{X} q(t, r, x(r)) d r, \quad x \in C(X) \tag{1}
\end{equation*}
$$

We have the following theorem:
Theorem 3.2. Suppose $T: X \times \mathbb{R} \rightarrow[0,+\infty)$ is a function such that:
(a) $T(t, v(t)) \leq \int_{X} q(t, r, u(r)) d r \leq p(t, v(t)) \quad$ for all $\quad r, t \in X$,
(b) $p(t, v(t))-T(t, v(t)) \leq k|p(t, v(t))-v(t)|$, where $k \in(0,1)$.

Then the integral equation (1) has a solution in $C(X)$.
Proof. Define $(A x)(t)=\int_{X} q(t, r, x(r)) d r$ and $(B x)(t)=p(t, x(t))$. Now we have:

$$
\begin{aligned}
S(A x, A x, B y) & =2 \sup _{t \in X}|(A x)(t)-(B y)(t)| \\
& =2 \sup _{t \in X}\left|p(t, y(t))-\int_{X} q(t, r, x(t)) d t\right| \\
& \leq 2 \sup _{t \in X}|p(t, y(t))-T(t, y(t))| \\
& \leq 2 k \sup _{t \in X}|p(t, y(t))-y(t)|=k S(y, y, B y) .
\end{aligned}
$$

We put $H=i d_{C(X)}$ and $\phi(l)=k l$ for all $l \geq 0$ and $k \in(0,1)$, so we have:

$$
\begin{gathered}
S(A x, A x, B y) \leq k S(y, y, B y)=\phi(S(y, y, B y)) \leq \\
\phi(\max \{S(x, x, y), S(x, x, B y), S(y, y, B y)\})
\end{gathered}
$$

hence, hypothesis (a) of Corollary 3.1 is satisfied.
To prove the Limit Property, let $\left\{x_{n}\right\}$ be a sequence in X such that $\lim _{n \rightarrow+\infty} A x_{n}=$ t, assume $y_{n}=A x_{n}$. We show that for every $n \in \mathbb{N}, B y_{n}=y_{n}$. Hence we have $\lim _{n \rightarrow+\infty} y_{n}=t=\lim _{n \rightarrow+\infty} B y_{n}$. We have:

$$
\begin{aligned}
S\left(A x_{n}, A x_{n}, B y_{n}\right) & \leq k S\left(y_{n}, y_{n}, B y_{n}\right) \\
& \Rightarrow S\left(y_{n}, y_{n}, B y_{n}\right) \leq k S\left(y_{n}, y_{n}, B y_{n}\right) \\
& \Rightarrow k S\left(y_{n}, y_{n}, B y_{n}\right)=0
\end{aligned}
$$

Then, $y_{n}=B y_{n}$ for every $n \in \mathbb{N}$.
Also, since $H(X)=X$, both hypotheses (b) and (d) are satisfied. Obviously, $\left(A, i d_{C(X)}\right)$ and $\left(B, i d_{C(X)}\right)$ are weakly compatible, hence there is a unique solution of integral equation (1) in $C(X)$.

The problem of dynamic programming related to a multistage process reduces to the subject of solving functional equations. In this part, we want to solve the following functional equation (2) by Corollary 3.1. Suppose that U and V are Banach spaces, $W \subseteq U$ is a state space, which is the set of the initial state, actions and transition model of the process and $D \subseteq V$ is a decision space, which is the set of possible actions that are allowed for the process, we set:

$$
\begin{equation*}
Q(x)=\sup _{y \in D}\{f(x, y)+K(x, y, Q(\tau(x, y))\}, \quad x \in W \tag{2}
\end{equation*}
$$

where $\tau: W \times D \rightarrow W, f: W \times D \rightarrow \mathbb{R}, K: W \times D \times \mathbb{R} \rightarrow \mathbb{R}$. Let $B(W)$ denote the space of all bounded real-valued functions on W. We equip $B(W)$ with the following S-metric, which is obviously a complete S-metric space,

$$
S(h, k, p)=\sup _{x \in W}|h(x)-p(x)|+\sup _{x \in W}|k(x)-p(x)| \quad \text { for all } \quad h, k, p \in B(W) .
$$

Now, we state the main result of this part.
Theorem 3.3. Let $f: W \times D \rightarrow \mathbb{R}$ and $K: W \times D \times \mathbb{R} \rightarrow \mathbb{R}$ be two bounded functions and also $\tau: W \times D \rightarrow W$ be a function. Let $A: B(W) \rightarrow B(W)$ be defined by

$$
(A(h))(x)=\sup _{y \in D}\{f(x, y)+K(x, y,(h)(\tau(x, y)))\},
$$

for all $h \in B(W)$ and $x \in W$. Suppose that the following condition holds:

$$
\begin{equation*}
|K(x, y, h(\tau(x, y)))-K(x, y, k(\tau(x, y)))| \leq \frac{1}{2} \phi(|h(x)-k(x)|) \tag{3}
\end{equation*}
$$

where $x \in W, y \in D$ and $\phi \in \Phi$. Then the functional equation (2) has a unique bounded solution.

Proof. We like to remind that $(B(W), S)$ is a complete S-metric space. Let ϵ be an arbitrary positive number, $x \in W$ and $h_{1}, h_{2} \in B(W)$, then there exist $y_{1}, y_{2} \in D$ such that

$$
\begin{align*}
& \left(A\left(h_{1}\right)\right)(x)<f\left(x, y_{1}\right)+K\left(x, y_{1}, h_{1}\left(\tau\left(x, y_{1}\right)\right)\right)+\frac{\epsilon}{2}, \tag{4}\\
& \left(A\left(h_{2}\right)\right)(x)<f\left(x, y_{2}\right)+K\left(x, y_{2}, h_{2}\left(\tau\left(x, y_{2}\right)\right)\right)+\frac{\epsilon}{2}, \tag{5}\\
& \left(A\left(h_{1}\right)\right)(x) \geq f\left(x, y_{2}\right)+K\left(x, y_{2}, h_{1}\left(\tau\left(x, y_{2}\right)\right)\right), \tag{6}\\
& \left(A\left(h_{2}\right)\right)(x) \geq f\left(x, y_{1}\right)+K\left(x, y_{1}, h_{2}\left(\tau\left(x, y_{1}\right)\right)\right) . \tag{7}
\end{align*}
$$

Then by (4), (7) and (3) we have: (inequalities (6),(7) are true for all $y_{1}, y_{2} \in D$),

$$
\begin{aligned}
\left(A\left(h_{1}\right)\right)(x)-\left(A\left(h_{2}\right)\right)(x) & <K\left(x, y_{1}, h_{1}\left(\tau\left(x, y_{1}\right)\right)\right)-K\left(x, y_{1}, h_{2}\left(\tau\left(x, y_{1}\right)\right)\right)+\frac{\epsilon}{2} \\
& \leq\left|K\left(x, y_{1}, h_{1}\left(\tau\left(x, y_{1}\right)\right)\right)-K\left(x, y_{1}, h_{2}\left(\tau\left(x, y_{1}\right)\right)\right)\right|+\frac{\epsilon}{2} \\
& \leq \frac{1}{2}\left(\phi\left(\left|h_{1}(x)-h_{2}(x)\right|\right)+\epsilon\right)
\end{aligned}
$$

Therefore we get:

$$
\begin{equation*}
\left(A\left(h_{1}\right)\right)(x)-\left(A\left(h_{2}\right)\right)(x) \leq \frac{1}{2}\left(\phi\left(\left|h_{1}(x)-h_{2}(x)\right|\right)+\epsilon\right) \tag{8}
\end{equation*}
$$

Similarly, by (5) , (6) and (3), we obtain:

$$
\begin{equation*}
\left(A\left(h_{2}\right)\right)(x)-\left(A\left(h_{1}\right)\right)(x) \leq \frac{1}{2}\left(\phi\left(\left|h_{1}(x)-h_{2}(x)\right|\right)+\epsilon\right) \tag{9}
\end{equation*}
$$

Therefore, by (8) and (9), we have:

$$
\begin{equation*}
2\left|\left(A\left(h_{1}\right)\right)(x)-\left(A\left(h_{2}\right)\right)(x)\right| \leq \phi\left(\left|h_{1}(x)-h_{2}(x)\right|\right)+\epsilon \tag{10}
\end{equation*}
$$

which implies

$$
\begin{equation*}
S\left(\left(A\left(h_{1}\right)\right)(x),\left(A\left(h_{1}\right)\right)(x),\left(A\left(h_{2}\right)\right)(x)\right)<\phi\left(S\left(h_{1}(x), h_{1}(x), h_{2}(x)\right)\right)+\epsilon \tag{11}
\end{equation*}
$$

Since $\epsilon>0$ is arbitrary, we can deduce that

$$
\left.\left.\left.S\left(\left(A\left(h_{1}\right)\right)(x)\right),\left(A\left(h_{1}\right)\right)(x)\right),\left(A\left(h_{2}\right)\right)(x)\right)\right) \leq \phi\left(S\left(h_{1}(x), h_{1}(x), h_{2}(x)\right)\right)
$$

Thus, all the hypothesis of Corollary 3.1 are satisfied with $A=B$ and $H=i d_{B(W)}$, the identity map on $B(W)$. Therefore, functional equation (2) has a unique bounded solution.

Example 3.2. Let consider the following functional equation

$$
\begin{equation*}
(A(h))(x)=\sup _{y \in D}\left\{\arctan (x+3|y|)+\frac{1}{2} \ln \left(1+x+\frac{1}{1+|y|}+|h(x)|\right)\right\} \tag{12}
\end{equation*}
$$

for $x \in[0,1]$, where $W=[0,1], D=\mathbb{R}$. Then,

$$
\begin{gathered}
f:[0,1] \times \mathbb{R} \rightarrow \mathbb{R} \text { is defined by } f(x, y)=\arctan (x+3|y|), \\
\tau:[0,1] \times \mathbb{R} \rightarrow[0,1] \text { is defined by } \tau(x, y)=x, \text { and }
\end{gathered}
$$

$K:[0,1] \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is defined by $K(x, y, t)=\frac{1}{2} \ln \left(1+x+\frac{1}{1+|y|}+|t|\right)$.
It's clear that $|f(x, y)| \leq \frac{\pi}{2}$ and $|K(x, y, 0)|=\left|\frac{1}{2} \ln \left(1+x+\frac{1}{1+|y|}\right)\right|<\ln 3 \quad$ for all $x \in[0,1]$ and all $y \in \mathbb{R}$.
Hence the first assumption of Theorem 3.3 is satisfied. Furthermore, consider the continuous function $\phi(h)=\ln (1+h)$ for all $h \in[0, \infty]$. Therefore, for all $x \in[0,1]$
and all $y, k \in \mathbb{R}$ (we can assume that $|h|>|k|$ without loss of generality), it follows that:

$$
\begin{aligned}
& |K(x, y, h(x))-K(x, y, k(x))| \\
& =\left|\frac{1}{2} \ln \left(1+x+\frac{1}{1+|y|}+|h(x)|\right)-\frac{1}{2} \ln \left(1+x+\frac{1}{1+|y|}+|k(x)|\right)\right| \\
& =\frac{1}{2}\left|\ln \frac{1+x+\frac{1}{1+|y|}+|h(x)|}{1+x+\frac{1}{1+|y|}+|k(x)|}\right| \\
& =\frac{1}{2}\left|\ln \frac{1+x+\frac{1}{1+|y|}+|k(x)|+(|h(x)|-|k(x)|)}{1+x+\frac{1}{1+|y|}+|k(x)|}\right| \\
& =\frac{1}{2}\left|\ln \left(1+\frac{(|h(x)|-|k(x)|)}{1+x+\frac{1}{1+|y|}+|k(x)|}\right)\right| \\
& \left.\leq \frac{1}{2} \right\rvert\, \ln (1+(|h(x)|-|k(x)|) \mid \\
& =\frac{1}{2} \ln \left(1+(|h(x)|-|k(x)|)=\frac{1}{2} \ln (1+||h(x)|-|k(x)||\right. \\
& \leq \frac{1}{2} \ln (1+|h(x)-k(x)|)=\frac{1}{2} \phi(|h(x)-k(x)| .
\end{aligned}
$$

Then inequality (3) in theorem (3.3) also holds where $x \in[0,1], y \in \mathbb{R}$ and $\phi \in \Phi$, which implies functional equation (12) has a unique bounded solution $h \in B[0,1]$.

Acknowledgment

We would like to express our appreciation to the referee for his(her) critical reading of our original manuscript and for his(her) helpful comments and encouragements.

References

1. M. Aamri \& D. El Moutawakil: Common fixed under contractions in symmetric spaces. Appl Mathematics E-notes 3 (2003), 156-162.
2. R. Baskaran \& PV. Subrahmanyam: A note on the solution of a class of functional equations. Appl. Anal. 22 (1986), 235-241.
3. R. Bellman \& ES. Lee: Functional equations in dynamic programming. Aequ. Math. 17 (1978), 1-18.
4. BC. Dhage: Generalized metric space and mapping with fixed point. Bull. Calcutta Math. Soc. 84 (1992), 329-336.
5. S. Manro, S. Bhatia, S. Kumar \& C. Vetro: A common fixed point theorem for two weakly compatible pairs in G-metric spaces using the property E.A.. Fixed Point Theory Appl. 2013 (2013), 41.
6. J. Matkowski: Fixed point theorems for mappings with a contractive iterate at a point. Proc. Am. Math. Soc. 62 (1977), 344-348.
7. J. Mojaradi Afra: Fixed point type theorem in S-metric spaces. Theory of Approximation and App. 10 (2016), no. 2, 33-41.
8. Z. Mustafa \& B. Sims: A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 7 (2006), 289-297.
9. S. Sedghi \& N.V. Dung: Fixed point theorems on S-metric spaces. Mat. Vesnik. 66 (2014), 113-124.
10. S. Sedghi, N. Shobe \& A. Aliouche: A generalization of fixed point theorem in S-metric spaces. Mat. Vesnik 64 (2012), 258-266.
${ }^{\text {a }}$ Department of Pure Mathematics, Faculty of Mathematical Sciences, Lahijan Branch, Islamic Azad University Lahijan, Iran
Email address: mojarrad.afra@gmail.com
${ }^{\text {b }}$ Department of Pure Mathematics, Faculty of Mathematical Sciences, Lahijan Branch, Islamic Azad University Lahijan, Iran
Email address: masoudsabbaghan@liau.ac.ir, masoudsabbaghan@gmail.com

[^0]: Received by the editors December 09, 2018. Revised June 08, 2020. Accepted December 02, 2020. 2010 Mathematics Subject Classification. 54H25, 47H10.
 Key words and phrases. S-metric spaces, fixed point, weakly compatible, limit property, dynamic programming, integral equation.
 *Corresponding author.

