J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. https://doi.org/10.7468/jksmeb.2021.28.1.1 Volume 28, Number 1 (February 2021), Pages 1–13

SOME NEW APPLICATIONS OF *S*-METRIC SPACES BY WEAKLY COMPATIBLE PAIRS WITH A LIMIT PROPERTY

J. Mojaradi Afra^a and M. Sabbaghan^{b,*}

ABSTRACT. In this note we use a generalization of coincidence point(a property which was defined by [1] in symmetric spaces) to prove common fixed point theorem on S-metric spaces for weakly compatible maps. Also the results are used to achieve the solution of an integral equation and the bounded solution of a functional equation in dynamic programming.

1. INTRODUCTION

Fixed point theorems play a principal role in solving integral equations [2, 3] arising in several areas of mathematics and other related subjects. In 1992, Dhage [4] offered the concept of a D-metric space. Later on, in 2006, Mustafa and Sims [8] showed that most of the results concerning Dhage's D-metric space are invalid. Therefore, they introduced a new notion of a generalized metric space, called G-metric space. Recently, Sedghi et al. [10] introduced the concept of S-metric space and some of their properties. In this note, we use a geralization of coincidence point on S-metric spaces to find a procedure to prove some type of fixed point theorems and applying its consequences to get a solution for an integral equation and a functional equation in dynamic programming.

2. Basic Concepts

First we recall some notions, lemmas and examples which will be useful later (see [10]):

 $\bigodot 2021$ Korean Soc. Math. Educ.

Received by the editors December 09, 2018. Revised June 08, 2020. Accepted December 02, 2020. 2010 Mathematics Subject Classification. 54H25, 47H10.

Key words and phrases. S-metric spaces, fixed point, weakly compatible, limit property, dynamic programming, integral equation.

^{*}Corresponding author.

Definition 2.1. Let X be a nonempty set. An S-metric on X is a function $S : X^3 \to [0, \infty)$ which satisfies the following conditions for all $x, y, z, a \in X$

(i) $S(x, y, z) \ge 0$,

(ii) S(x, y, z) = 0 if and only if x = y = z,

(iii) $S(x, y, z) \le S(x, x, a) + S(y, y, a) + S(z, z, a).$

The set X with an S-metric is called an S-metric space.

The standard examples of S-metric spaces are:

(a) Let X be any normed space, then S(x, y, z) = ||y + z - 2x|| + ||y - z|| is an S-metric on X.

(b) Let (X, d) be a metric space, then $S_d(x, y, z) = d(x, z) + d(y, z)$ is an S-metric on X. This S-metric is called the *usual* S-metric on X.

(c) Another S-metric on (X, d) is $S'_d(x, y, z) = d(x, y) + d(x, z) + d(y, z)$ which is symmetric with respect to the argument.

(d) Let $X = [0, +\infty)$, then

$$S(x, y, z) = \begin{cases} 0 & \text{if } x = y = z, \\ \max\{x, y, z\} & \text{otherwise,} \end{cases}$$

is an S-metric. This S-metric can not be defined by a usual S-metric. We call S the maximum S-metric on X.

In this note, we will often use the following important facts.

Lemma 2.1 ([10]). In any S-metric space (X, S), we have S(x, x, y) = S(y, y, x) for all $x, y \in X$.

Definition 2.2. A sequence $\{x_n\}$ in X converges to x if $S(x_n, x_n, x) \to 0$ as $n \to \infty$. We denote this by $\lim_{n\to\infty} x_n = x$.

Definition 2.3. A sequence $\{x_n\}$ in an S-metric space (X, S) is called a Cauchy sequence if $S(x_n, x_n, x_m) \to 0$ as $n, m \to \infty$.

Lemma 2.2 ([10]). Let (X, S) be an S-metric space then,

a. The limit of a sequence in an S-metric space is unique.

b. Every convergent sequence in an S-metric space is a Cauchy sequence.

c. If there exist sequences $\{x_n\}$ and $\{y_n\}$ such that $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = x$

y, then $\lim_{n\to\infty} S(x_n, x_n, y_n) = S(x, x, y)$.

There exists a natural topology on an S-metric spaces. First, let us define the notion of (open) ball.

Definition 2.4. Let (X, S) be an S-metric space. For r > 0 and $x \in X$ we define a ball with center x and radius r as follows:

$$B_s(x, r) = \{ y \in X : S(y, y, x) < r \}.$$

This is a quite different concept of a ball in a usual metric space. We have:

Example 2.1. Let $S_d(x, y, z) = d(x, z) + d(y, z)$ be the usual S-metric on (X, d) and let $x_0 \in X$. Then:

$$B_s(x_0, 2) = \{ y \in X : S(y, y, x_0) < 2 \} = \{ y \in X : 2d(y, x_0) < 2 \}$$
$$= \{ y \in X : d(y, x_0) < 1 \} = B_d(x_0, 1).$$

By using this notion of a ball, we can introduce the standard topology on S-metric space.

Definition 2.5. The S-metric space (X, S) is said to be *complete* if every Cauchy sequence converges.

We have the following result:

Lemma 2.3 ([7]). Any S-metric space is Hausdorff.

Remark 2.1. We have:

 $x_n \to x$ in (X, d) if and only if $d(x_n, x) \to 0$, if and only if $S_d(x_n, x_n, x) = 2d(x_n, x) \to 0$, that is, $x_n \to x$ in (X, S_d) .

Definition 2.6 ([10]). Let (X, S) be an S-metric space. A self-map $T : X \to X$ is called a *contraction map* if there exists a constant $0 \le k < 1$ such that

$$S(Tx, Tx, Ty) \le kS(x, x, y), \text{ for all } x, y \in X.$$

Theorem 2.1 ([10]). Let (X, S) be a complete S-metric space and $T : X \to X$ be a contraction map. Then, F has a unique fixed point.

Definition 2.7 ([1]). Let L and T be two self-maps on a S-metric space (X, S). Then, the pair (L,T) is said to be *weakly compatible* if they commute at their coincidence points, that is, if Lu = Tu for some $u \in X$, then TLu = LTu.

Definition 2.8 ([5]). Let L and T be two self-maps on an S-metric space (X, S). We say the pair (L, T) generalize the *coincidence point* if there exists a sequence $\{x_n\}$ in X such that $\lim_{n\to+\infty} Lx_n = \lim_{n\to+\infty} Tx_n = t$, for some $t \in X$. We call it *Limit Property*. We were mentioned that, this property had called by [1] (E.A.). The following examples are from [5]:

Example 2.2. Let $X = [2, +\infty)$. Define $L, T : X \to X$ by L(x) = 2x + 1 and T(x) = x + 1 for all $x \in X$. Suppose that the property *E.A.* holds. Then there exists a sequence $\{x_n\}$ in X such that $\lim_{n\to+\infty} Lx_n = \lim_{n\to+\infty} Tx_n = t$ for some $t \in X$. It follows that $\lim_{n\to+\infty} x_n = \frac{t-1}{2}$ and $\lim_{n\to+\infty} x_n = t - 1$ and so, by uniqueness of limit, t = 1 but $t \notin X$. Therefore, L and T do not satisfy the Limit Property.

Example 2.3. Let $X = [0, +\infty)$. Define $L, T : X \to X$ by $L(x) = \frac{3}{4}x$ and $T(x) = \frac{x}{4}$ for all $x \in X$. Consider the sequence $x_n = \{\frac{1}{n}\}_{n \in \mathbb{N}}$ in X. Clearly, $\lim_{n \to +\infty} Lx_n = \lim_{n \to +\infty} Tx_n = 0 \in X$, so L and T satisfy the Limit Property.

Let the nondecreasing function $\phi : [0, +\infty) \to [0, +\infty)$ satisfies following properties (see [6]):

(M1) $\lim_{n \to +\infty} \phi^n(t) = 0$, for all $t \in (0, +\infty)$, (M2) $\phi(t) < t$ for all $t \in (0, +\infty)$, (M3) $\phi(0) = 0$.

The set of all functions such as ϕ is denoted by Φ .

3. Main Results

The following theorem is our main result :

Theorem 3.1. Let (X, S) be an S-metric space and $A, B, H, T : X \to X$ be four self-mappings such that:

(a) $S(Ax, Ax, By) \leq \phi(max\{S(Hx, Hx, Ty), S(Hx, Hx, By), S(Ty, Ty, By)\})$, for all $x, y \in X$ and $\phi \in \Phi$,

(b) $B(X) \subseteq H(X)$ and $A(X) \subseteq T(X)$,

(c) (A, H) or (B, T) satisfies the Limit Property,

(d) A(X), B(X), H(X) or T(X) is a closed subset of X.

Then (A, H) and (B, T) have a coincidence point. Further, if (A, H) and (B, T) are weakly compatible, then A, B, H and T have a unique common fixed point in X.

Proof. Suppose (B,T) satisfies the Limit Property. Then there exists a sequence $\{x_n\}$ in X such that $\lim_{n\to+\infty} Bx_n = \lim_{n\to+\infty} Tx_n = t$, for some $t \in X$. Since $B(X) \subseteq H(X)$, there exists a sequence $\{y_n\}$ in X such that $Bx_n = Hy_n$. Hence

 $\lim_{n\to+\infty} Hy_n = t$. We will show that $\lim_{n\to+\infty} Ay_n = t$. We have:

$$S(Ay_n, Ay_n, Bx_n)$$

$$\leq \phi(\max\{S(Hy_n, Hy_n, Tx_n), S(Hy_n, Hy_n, Bx_n), S(Tx_n, Tx_n, Bx_n)\}),$$

so,

$$\max\{S(Hy_n, Hy_n, Tx_n), S(Hy_n, Hy_n, Bx_n), S(Tx_n, Tx_n, Bx_n)\} = \begin{cases} S(Hy_n, Hy_n, Tx_n) & or \\ S(Hy_n, Hy_n, Bx_n) & or \\ S(Tx_n, Tx_n, Bx_n). \end{cases}$$

Hence,

$$\begin{split} S(Ay_n, Ay_n, Bx_n) \\ &\leq \phi(\max\{S(Hy_n, Hy_n, Tx_n), S(Hy_n, Hy_n, Bx_n), S(Tx_n, Tx_n, Bx_n)\}) \\ &= \begin{cases} \phi(S(Hy_n, Hy_n, Tx_n)) & or \\ \phi(S(Hy_n, Hy_n, Bx_n)) & or \\ \phi(S(Tx_n, Tx_n, Bx_n)). \end{cases} \end{split}$$

Assume that $S(Ay_n, Ay_n, Bx_n) \leq \lim_{n \to +\infty} S(Hy_n, Hy_n, Tx_n)$. Since $\phi(t) \leq t$ for all $t \in [0, \infty)$, then, by taking limit we have:

$$\lim_{n \to +\infty} S(Ay_n, Ay_n, Bx_n) \le \lim_{n \to +\infty} S(Hy_n, Hy_n, Tx_n),$$

by Lemma 2.2, $\lim_{n\to+\infty} S(Hy_n, Hy_n, Tx_n) = S(t, t, t) = 0$, that is,

$$\lim S(Ay_n, Ay_n, Bx_n) = 0.$$

The above equality holds similarly for other cases. By Definition 2.1(iii) and Lemma 2.1, we have:

$$S(Ay_n, Ay_n, t) \le 2S(Ay_n, Ay_n, Bx_n) + S(t, t, Bx_n)$$
$$= 2S(Ay_n, Ay_n, Bx_n) + S(Bx_n, Bx_n, t).$$

Now by taking limit and using third part of Lemma 2.2 we have, $\lim S(Ay_n, Ay_n, t) = 0$, hence by Definition 2.2, $\lim_{n \to +\infty} Ay_n = t$. That is,

 $\lim_{n \to +\infty} Ay_n = \lim_{n \to +\infty} Bx_n = \lim_{n \to +\infty} Hy_n = \lim_{n \to +\infty} Tx_n = t.$

Suppose that H(X) is a closed subset of X, then, t = Hu for some $u \in X$. We show that Au = Hu = t. From (a), we have:

 $S(Au, Au, Bx_n) \le \phi(\max\{S(Hu, Hu, Tx_n), S(Hu, Hu, Bx_n), S(Tx_n, Tx_n, Bx_n)\}).$

Without loss of generality, assume that

 $\phi(\max\{S(Hu, Hu, Tx_n), S(Hu, Hu, Bx_n), S(Tx_n, Tx_n, Bx_n)\}) \le \phi(S(Hu, Hu, Tx_n)),$ then,

$$S(Au, Au, Bx_n) \le \phi(\max\{S(Hu, Hu, Tx_n), S(Hu, Hu, Bx_n), S(Tx_n, Tx_n, Bx_n)\})$$

$$\le \phi(S(Hu, Hu, Tx_n))$$

$$\le S(Hu, Hu, Tx_n),$$

by taking limit, we have:

$$\lim_{n \to +\infty} S(Au, Au, Bx_n) \leq \lim_{n \to +\infty} S(Hu, Hu, Tx_n)$$

$$\stackrel{Lemma2.1}{=} \lim_{n \to +\infty} S(Tx_n, Tx_n, Hu)$$

$$\stackrel{Lemma2.4}{=} \lim_{n \to +\infty} S(t, t, t) = 0,$$

Hence, $\lim_{n\to+\infty} S(Au, Au, Bx_n) = 0$. Now, observe that

$$S(Au, Au, t) \leq S(Au, Au, Bx_n) + S(Au, Au, Bx_n) + S(t, t, Bx_n)$$
$$= 2S(Au, Au, Bx_n) + S(Bx_n, Bx_n, t),$$

by taking limit and the fact that $\lim_{n\to+\infty} S(Bx_n, Bx_n, t) = S(t, t, t) = 0$, we have, S(Au, Au, t) = 0, therefore Au = t.

Hence, u is a coincidence point of the pair (A, H). Since $A(X) \subseteq T(X)$, there exists $v \in X$ such that Au = Tv. We claim that Tv = Bv. Suppose that $Tv \neq Bv$, by hypothesis (a) and by (M2), we have:

$$S(Au, Au, Bv) \le \phi(\max\{S(Hu, Hu, Tv), S(Hu, Hu, Bv), S(Tv, Tv, Bv)\})$$

= $\phi(\max\{0, S(Au, Au, Bv), S(Au, Au, Bv)\})$
= $\phi(S(Au, Au, Bv))$
< $S(Au, Au, Bv).$

This is a contradiction. Hence Au = Bv and Tv = Bv. So (B, T) has a coincidence point. Therefore, we have Bv = Tv = Hu = Au.

Now, if B and T are weakly compatible, then we have BTv = TBv = TTv = BBvand the weak compatibility of A and H implies that AHu = HAu. Hence, AAu = AHu = HAu = HHu. We show that Au is a common fixed point of A, B, H and

6

T. Suppose that $AAu \neq Au$. By hypothesis (a) and by (M2), we have:

$$\begin{split} S(AAu, AAu, Au) &= S(AAu, AAu, Bv) \\ &\leq \phi(\max\{S(HAu, HAu, Tv), S(HAu, HAu, Bv), S(Tv, Tv, Bv)\}) \\ &= \phi(\max\{S(AAu, AAu, Bv), S(AAu, AAu, Bv), S(Bv, Bv, Bv)\} \\ &= \phi(\max\{S(AAu, AAu, Bv), S(AAu, AAu, Bv), 0\} \\ &= \phi(S(AAu, AAu, Bv)) \\ &< S(AAu, AAu, Bv). \end{split}$$

This is a contradiction. Hence, Au = AAu = Bv. Therefore, Au = AAu = HAu is a common fixed point of A and H. By a similar argument, Bv is a common fixed point of B and T. Since Au = Bv, we deduce that Au is a common fixed point of A, B, H and T. Only uniqueness of common fixed point has remained. Suppose that w and z are two different common fixed points of A, B, H and T, then, by hypothesis (a) and by (M2), we have:

$$\begin{split} S(w, w, z) &= S(Aw, Aw, Bz) \\ &\leq \phi(\max\{S(Hw, Hw, Tz), S(Hw, Hw, Bz), S(Tz, Tz, Bz)\}) \\ &= \phi(\max\{S(w, w, z), S(w, w, z), S(z, z, z)\}) \\ &= \phi(S(w, w, z)) \\ &< S(w, z, z), \end{split}$$

which is a contradiction. Hence, w = z. Therefore, A, B, H and T have a unique common fixed point.

By taking H = T in Theorem 3.1, the results for three self-mappings A, B and T are satisfied. We have the following corollary:

Corollary 3.1. Let (X, S) be an S-metric space and $A, B, H : X \to X$ be three self mappings such that:

 $\begin{aligned} &(a) \ S(Ax, Ax, By) \leq \phi(\max\{S(Hx, Hx, Hy), S(Hx, Hx, By), S(Hy, Hy, By)\}), \ where \\ &\phi \in \Phi, \ for \ all \ x, y \in X. \\ &(b) \ A(X) \subseteq H(X) \ and \ B(X) \subseteq H(X), \end{aligned}$

(c) (A, H) or (B, H) satisfies the Limit Property,

(d) A(X), B(X) or H(X) is a closed subset of X.

Then the pairs (A, H) and (B, H) have a coincidence point. Further, if (A, H) and

(B,H) are weakly compatible, then A, B and H have a unique common fixed point in X.

Example 3.1. Equip $X = [1, +\infty]$ with the maximum S-metric. Define A, B, H: $X \to X$ by Ax = x, Bx = 2x - 1 and $Hx = x^2$ for all $x \in X$ and $\phi : [0, +\infty) \to \infty$ $[0, +\infty)$ by $\phi(t) = t$ for all $t \ge 0$. The pair (A, H) satisfies the Limit Property. Also, the hypotheses (b) and (d) of Corollary 3.1 hold trivially. We have:

$$\begin{split} S(Ax, Ax, By) &= \begin{cases} 0 & \text{if } x = 2y - 1, \\ 2y - 1 & \text{if } x < 2y - 1, \\ x & \text{if } 2y - 1 < x. \end{cases} \\ S(Hx, Hx, Hy) &= \begin{cases} y^2 & \text{if } x < y, \\ x^2 & \text{if } y < x, \\ 0 & \text{if } x = y. \end{cases} \\ S(Hx, Hx, By) &= \begin{cases} x^2 & \text{if } 2y - 1 < x^2, \\ 2y - 1 & \text{if } x^2 < 2y - 1, \\ 0 & \text{if } x^2 = 2y - 1. \end{cases} \\ S(Hy, Hy, By) &= \begin{cases} 0 & \text{if } y = 1, \\ y^2 & \text{if } y \neq 1, \end{cases} \\ So \text{ for } x < 2y - 1, x < y, x^2 < 2y - 1, y \neq 1, \text{ we have:} \\ 2y - 1 \le \max\{y^2, 2y - 1\} = y^2. \end{cases} \\ \text{r } x < 2y - 1, x < y, 2y - 1 < x^2 \text{ and } y \neq 1, \text{ we have:} \end{cases} \end{split}$$

$$2y - 1 \le \max\{y^2, x^2\} = y^2.$$

For y < x, 2y - 1 < x, $y \neq 1$, we have:

For x < 2y -

$$x \le \max\{x^2, y^2\} = x^2.$$

So, the inequality (a) in Corollary 3.1 is correct(other cases are trivial). Hence, the pairs (B, H) and (A, H) have a coincidence point. In addition, since (B, H) and (A, H) are weakly compatible, so A, B and H have the unique common fixed point 1.

The major result of this paper is finding a solution for the following integral equation by applying Corollary 3.1.

Let X = [0,1] and C(X) be the space of all the real valued continuous functions defined on X. Also, suppose that the S-metric on this space is as follows:

$$S(x, y, z) = \sup_{t \in X} |x(t) - z(t)| + \sup_{t \in X} |y(t) - z(t)|, \text{ for all } x, y, z \in C(X).$$

Clearly (C(X),S) is a complete S-metric space.

Let $p: X \times \mathbb{R} \to \mathbb{R}$ and $q: X \times X \times \mathbb{R} \to \mathbb{R}$ be two continuous functions and consider the following integral equation:

(1)
$$p(t,x(t)) = \int_X q(t,r,x(r))dr, \quad x \in C(X).$$

We have the following theorem:

Theorem 3.2. Suppose $T: X \times \mathbb{R} \to [0, +\infty)$ is a function such that: (a) $T(t, v(t)) \leq \int_X q(t, r, u(r)) dr \leq p(t, v(t))$ for all $r, t \in X$, (b) $p(t, v(t)) - T(t, v(t)) \leq k |p(t, v(t)) - v(t)|$, where $k \in (0, 1)$. Then the integral equation (1) has a solution in C(X).

Proof. Define $(Ax)(t) = \int_X q(t, r, x(r)) dr$ and (Bx)(t) = p(t, x(t)). Now we have:

$$\begin{split} S(Ax, Ax, By) &= 2 \sup_{t \in X} |(Ax)(t) - (By)(t)| \\ &= 2 \sup_{t \in X} \left| p(t, y(t)) - \int_X q(t, r, x(t)) dt \right| \\ &\leq 2 \sup_{t \in X} \left| p(t, y(t)) - T(t, y(t)) \right| \\ &\leq 2k \sup_{t \in X} \left| p(t, y(t)) - y(t) \right| = kS(y, y, By) \end{split}$$

We put $H = id_{C(X)}$ and $\phi(l) = kl$ for all $l \ge 0$ and $k \in (0, 1)$, so we have:

$$\begin{split} S(Ax, Ax, By) &\leq kS(y, y, By) = \phi(S(y, y, By)) \leq \\ \phi(\max\{S(x, x, y), S(x, x, By), S(y, y, By)\}), \end{split}$$

hence, hypothesis (a) of Corollary 3.1 is satisfied.

To prove the Limit Property, let $\{x_n\}$ be a sequence in X such that $\lim_{n\to+\infty} Ax_n = t$, assume $y_n = Ax_n$. We show that for every $n \in \mathbb{N}$, $By_n = y_n$. Hence we have $\lim_{n\to+\infty} y_n = t = \lim_{n\to+\infty} By_n$. We have:

$$S(Ax_n, Ax_n, By_n) \le kS(y_n, y_n, By_n)$$

$$\Rightarrow S(y_n, y_n, By_n) \le kS(y_n, y_n, By_n)$$

$$\Rightarrow kS(y_n, y_n, By_n) = 0.$$

Then, $y_n = By_n$ for every $n \in \mathbb{N}$.

Also, since H(X) = X, both hypotheses (b) and (d) are satisfied. Obviously, $(A, id_{C(X)})$ and $(B, id_{C(X)})$ are weakly compatible, hence there is a unique solution of integral equation (1) in C(X).

The problem of dynamic programming related to a multistage process reduces to the subject of solving functional equations. In this part, we want to solve the following functional equation (2) by Corollary 3.1. Suppose that U and V are Banach spaces, $W \subseteq U$ is a state space, which is the set of the initial state, actions and transition model of the process and $D \subseteq V$ is a decision space, which is the set of possible actions that are allowed for the process, we set:

$$Q: W \to \mathbb{R}$$

(2)
$$Q(x) = \sup_{y \in D} \{ f(x, y) + K(x, y, Q(\tau(x, y))) \}, \quad x \in W,$$

where $\tau: W \times D \to W$, $f: W \times D \to \mathbb{R}$, $K: W \times D \times \mathbb{R} \to \mathbb{R}$. Let B(W) denote the space of all bounded real-valued functions on W. We equip B(W) with the following S-metric, which is obviously a complete S-metric space,

$$S(h,k,p) = \sup_{x \in W} |h(x) - p(x)| + \sup_{x \in W} |k(x) - p(x)| \text{ for all } h,k,p \in B(W).$$

Now, we state the main result of this part.

Theorem 3.3. Let $f: W \times D \to \mathbb{R}$ and $K: W \times D \times \mathbb{R} \to \mathbb{R}$ be two bounded functions and also $\tau: W \times D \to W$ be a function. Let $A: B(W) \to B(W)$ be defined by

$$(A(h))(x) = \sup_{y \in D} \{ f(x, y) + K(x, y, (h)(\tau(x, y))) \},\$$

for all $h \in B(W)$ and $x \in W$. Suppose that the following condition holds:

(3)
$$|K(x, y, h(\tau(x, y))) - K(x, y, k(\tau(x, y)))| \le \frac{1}{2}\phi(|h(x) - k(x)|),$$

where $x \in W$, $y \in D$ and $\phi \in \Phi$. Then the functional equation (2) has a unique bounded solution.

Proof. We like to remind that (B(W), S) is a complete S-metric space. Let ϵ be an arbitrary positive number, $x \in W$ and $h_1, h_2 \in B(W)$, then there exist $y_1, y_2 \in D$ such that

(4)
$$(A(h_1))(x) < f(x, y_1) + K(x, y_1, h_1(\tau(x, y_1))) + \frac{\epsilon}{2},$$

(5)
$$(A(h_2))(x) < f(x, y_2) + K(x, y_2, h_2(\tau(x, y_2))) + \frac{\epsilon}{2},$$

(6)
$$(A(h_1))(x) \ge f(x, y_2) + K(x, y_2, h_1(\tau(x, y_2))),$$

(7) $(A(h_2))(x) \ge f(x, y_1) + K(x, y_1, h_2(\tau(x, y_1))).$

Then by (4), (7) and (3) we have: (inequalities (6),(7) are true for all $y_1, y_2 \in D$),

$$(A(h_1))(x) - (A(h_2))(x) < K(x, y_1, h_1(\tau(x, y_1))) - K(x, y_1, h_2(\tau(x, y_1))) + \frac{\epsilon}{2}$$

$$\leq |K(x, y_1, h_1(\tau(x, y_1))) - K(x, y_1, h_2(\tau(x, y_1)))| + \frac{\epsilon}{2}$$

$$\leq \frac{1}{2}(\phi(|h_1(x) - h_2(x)|) + \epsilon).$$

Therefore we get:

(8)
$$(A(h_1))(x) - (A(h_2))(x) \le \frac{1}{2}(\phi(|h_1(x) - h_2(x)|) + \epsilon).$$

Similarly, by (5), (6) and (3), we obtain:

(9)
$$(A(h_2))(x) - (A(h_1))(x) \le \frac{1}{2}(\phi(|h_1(x) - h_2(x)|) + \epsilon) .$$

Therefore, by(8) and (9), we have:

(10)
$$2|(A(h_1))(x) - (A(h_2))(x)| \le \phi(|h_1(x) - h_2(x)|) + \epsilon$$

which implies

(11)
$$S((A(h_1))(x), (A(h_1))(x), (A(h_2))(x)) < \phi(S(h_1(x), h_1(x), h_2(x))) + \epsilon.$$

Since $\epsilon > 0$ is arbitrary, we can deduce that

$$S((A(h_1))(x)), (A(h_1))(x)), (A(h_2))(x))) \le \phi(S(h_1(x), h_1(x), h_2(x))).$$

Thus, all the hypothesis of Corollary 3.1 are satisfied with A = B and $H = id_{B(W)}$, the identity map on B(W). Therefore, functional equation (2) has a unique bounded solution.

Example 3.2. Let consider the following functional equation

(12)
$$(A(h))(x) = \sup_{y \in D} \left\{ \arctan(x+3|y|) + \frac{1}{2} \ln\left(1+x+\frac{1}{1+|y|}+|h(x)|\right) \right\}$$

for $x \in [0, 1]$, where W = [0, 1], $D = \mathbb{R}$. Then,

$$f: [0,1] \times \mathbb{R} \to \mathbb{R}$$
 is defined by $f(x,y) = \arctan(x+3|y|),$
 $\tau: [0,1] \times \mathbb{R} \to [0,1]$ is defined by $\tau(x,y) = x$ and

 $\begin{aligned} \tau:[0,1]\times\mathbb{R}\to[0,1] \text{ is defined by } \tau(x,y)=x, \text{ and}\\ K:[0,1]\times\mathbb{R}\times\mathbb{R}\to\mathbb{R} \text{ is defined by } K(x,y,t)=\frac{1}{2}\ln(1+x+\frac{1}{1+|y|}+|t|). \end{aligned}$

It's clear that $|f(x,y)| \leq \frac{\pi}{2}$ and $|K(x,y,0)| = \left|\frac{1}{2}\ln(1+x+\frac{1}{1+|y|})\right| < \ln 3$ for all $x \in [0,1]$ and all $y \in \mathbb{R}$.

Hence the first assumption of Theorem 3.3 is satisfied. Furthermore, consider the continuous function $\phi(h) = \ln(1+h)$ for all $h \in [0,\infty]$. Therefore, for all $x \in [0,1]$

and all $y, k \in \mathbb{R}$ (we can assume that |h| > |k| without loss of generality), it follows that:

$$\begin{split} \left| K(x,y,h(x)) - K(x,y,k(x)) \right| \\ &= \left| \frac{1}{2} \ln(1+x + \frac{1}{1+|y|} + |h(x)|) - \frac{1}{2} \ln(1+x + \frac{1}{1+|y|} + |k(x)|) \right| \\ &= \frac{1}{2} \left| \ln \frac{1+x + \frac{1}{1+|y|} + |h(x)|}{1+x + \frac{1}{1+|y|} + |k(x)|} \right| \\ &= \frac{1}{2} \left| \ln \frac{1+x + \frac{1}{1+|y|} + |k(x)| + (|h(x)| - |k(x)|)}{1+x + \frac{1}{1+|y|} + |k(x)|} \right| \\ &= \frac{1}{2} \left| \ln \left(1 + \frac{(|h(x)| - |k(x)|)}{1+x + \frac{1}{1+|y|} + |k(x)|} \right) \right| \\ &\leq \frac{1}{2} \left| \ln(1 + (|h(x)| - |k(x)|) \right| \\ &= \frac{1}{2} \ln(1 + (|h(x)| - |k(x)|) = \frac{1}{2} \ln(1 + ||h(x)| - |k(x)|) \\ &\leq \frac{1}{2} \ln(1 + |h(x) - k(x)|) = \frac{1}{2} \phi(|h(x) - k(x)|. \end{split}$$

Then inequality (3) in theorem (3.3) also holds where $x \in [0, 1]$, $y \in \mathbb{R}$ and $\phi \in \Phi$, which implies functional equation (12) has a unique bounded solution $h \in B[0, 1]$.

Acknowledgment

We would like to express our appreciation to the referee for his(her) critical reading of our original manuscript and for his(her) helpful comments and encouragements.

References

- 1. M. Aamri & D. El Moutawakil: Common fixed under contractions in symmetric spaces. Appl Mathematics E-notes **3** (2003), 156-162.
- R. Baskaran & PV. Subrahmanyam: A note on the solution of a class of functional equations. Appl. Anal. 22 (1986), 235-241.
- R. Bellman & ES. Lee: Functional equations in dynamic programming. Aequ. Math. 17 (1978), 1-18.
- BC. Dhage: Generalized metric space and mapping with fixed point. Bull. Calcutta Math. Soc. 84 (1992), 329-336.

- S. Manro, S. Bhatia, S. Kumar & C. Vetro: A common fixed point theorem for two weakly compatible pairs in *G*-metric spaces using the property *E.A.*. Fixed Point Theory Appl. **2013** (2013), 41.
- J. Matkowski: Fixed point theorems for mappings with a contractive iterate at a point. Proc. Am. Math. Soc. 62 (1977), 344-348.
- 7. J. Mojaradi Afra: Fixed point type theorem in S-metric spaces. Theory of Approximation and App. **10** (2016), no. 2, 33-41.
- Z. Mustafa & B. Sims: A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 7 (2006), 289-297.
- S. Sedghi & N.V. Dung: Fixed point theorems on S-metric spaces. Mat. Vesnik. 66 (2014), 113-124.
- S. Sedghi, N. Shobe & A. Aliouche: A generalization of fixed point theorem in S-metric spaces. Mat. Vesnik 64 (2012), 258-266.

^aDepartment of Pure Mathematics, Faculty of Mathematical Sciences, Lahijan Branch, Islamic Azad University Lahijan, Iran *Email address*: mojarrad.afra@gmail.com

^bDEPARTMENT OF PURE MATHEMATICS, FACULTY OF MATHEMATICAL SCIENCES, LAHIJAN BRANCH, ISLAMIC AZAD UNIVERSITY LAHIJAN, IRAN *Email address*: masoudsabbaghan@liau.ac.ir, masoudsabbaghan@gmail.com