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SOME NEW APPLICATIONS OF S-METRIC SPACES BY

WEAKLY COMPATIBLE PAIRS WITH A LIMIT PROPERTY

J. Mojaradi Afra a and M. Sabbaghan b, ∗

Abstract. In this note we use a generalization of coincidence point(a property
which was defined by [1] in symmetric spaces) to prove common fixed point theorem
on S-metric spaces for weakly compatible maps. Also the results are used to achieve
the solution of an integral equation and the bounded solution of a functional equation
in dynamic programming.

1. Introduction

Fixed point theorems play a principal role in solving integral equations [2, 3]

arising in several areas of mathematics and other related subjects. In 1992, Dhage

[4] offered the concept of a D-metric space. Later on, in 2006, Mustafa and Sims

[8] showed that most of the results concerning Dhage′s D-metric space are invalid.

Therefore, they introduced a new notion of a generalized metric space, called G-

metric space. Recently, Sedghi et al. [10] introduced the concept of S-metric space

and some of their properties. In this note, we use a geralization of coincidence

point on S-metric spaces to find a procedure to prove some type of fixed point

theorems and applying its consequences to get a solution for an integral equation

and a functional equation in dynamic programming.

2. Basic Concepts

First we recall some notions, lemmas and examples which will be useful later (see

[10]):
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Definition 2.1. Let X be a nonempty set. An S-metric on X is a function S :

X3 → [0,∞) which satisfies the following conditions for all x, y, z, a ∈ X

(i) S(x, y, z) ≥ 0,

(ii) S(x, y, z) = 0 if and only if x = y = z,

(iii) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).

The set X with an S-metric is called an S-metric space.

The standard examples of S -metric spaces are:

(a) Let X be any normed space, then S(x, y, z) =∥ y + z − 2x ∥ + ∥ y − z ∥ is an

S -metric on X.

(b) Let (X, d) be a metric space, then Sd(x, y, z) = d(x, z) + d(y, z) is an S -metric

on X. This S-metric is called the usual S-metric on X.

(c) Another S-metric on (X, d) is S′
d(x, y, z) = d(x, y) + d(x, z) + d(y, z) which is

symmetric with respect to the argument.

(d) Let X = [0,+∞), then

S(x, y, z) =

{
0 if x = y = z,

max{x, y, z} otherwise,

is an S-metric. This S-metric can not be defined by a usual S-metric. We call S

the maximum S-metric on X.

In this note, we will often use the following important facts.

Lemma 2.1 ([10]). In any S-metric space (X,S), we have S(x, x, y) = S(y, y, x)

for all x, y ∈ X.

Definition 2.2. A sequence {xn} in X converges to x if S(xn, xn, x) → 0 as n → ∞.

We denote this by limn→∞ xn = x .

Definition 2.3. A sequence {xn} in an S-metric space (X,S) is called a Cauchy

sequence if S(xn, xn, xm) → 0 as n,m → ∞.

Lemma 2.2 ([10]). Let (X,S) be an S-metric space then,

a. The limit of a sequence in an S-metric space is unique.

b. Every convergent sequence in an S-metric space is a Cauchy sequence.

c. If there exist sequences {xn} and {yn} such that limn→∞ xn = x and limn→∞ yn =

y, then limn→∞ S(xn, xn, yn) = S(x, x, y).

There exists a natural topology on an S-metric spaces. First, let us define the notion

of (open) ball.
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Definition 2.4. Let (X,S) be an S-metric space. For r > 0 and x ∈ X we define

a ball with center x and radius r as follows:

Bs(x, r) = {y ∈ X : S(y, y, x) < r}.

This is a quite different concept of a ball in a usual metric space. We have:

Example 2.1. Let Sd(x, y, z) = d(x, z) + d(y, z) be the usual S-metric on (X, d)

and let x0 ∈ X. Then:

Bs(x0, 2) = {y ∈ X : S(y, y, x0) < 2} = {y ∈ X : 2d(y, x0) < 2}

= {y ∈ X : d(y, x0) < 1} = Bd(x0, 1).

By using this notion of a ball, we can introduce the standard topology on S-metric

space.

Definition 2.5. The S-metric space (X,S) is said to be complete if every Cauchy

sequence converges.

We have the following result:

Lemma 2.3 ([7]). Any S-metric space is Hausdorff.

Remark 2.1. We have:

xn → x in (X, d) if and only if d(xn, x) → 0, if and only if Sd(xn, xn, x) = 2d(xn, x) →
0, that is, xn → x in (X,Sd).

Definition 2.6 ([10]). Let (X,S) be an S-metric space. A self-map T : X → X is

called a contraction map if there exists a constant 0 ≤ k < 1 such that

S(Tx, Tx, Ty) ≤ kS(x, x, y), for all x, y ∈ X.

Theorem 2.1 ([10]). Let (X,S) be a complete S-metric space and T : X → X be a

contraction map. Then, F has a unique fixed point.

Definition 2.7 ([1]). Let L and T be two self-maps on a S-metric space (X,S).

Then, the pair (L, T ) is said to be weakly compatible if they commute at their

coincidence points, that is, if Lu = Tu for some u ∈ X, then TLu = LTu.

Definition 2.8 ([5]). Let L and T be two self-maps on an S-metric space (X,S).

We say the pair (L, T ) generalize the coincidence point if there exists a sequence

{xn} in X such that limn→+∞ Lxn = limn→+∞ Txn = t, for some t ∈ X. We call it

Limit Property. We were mentioned that, this property had called by [1] (E.A.).
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The following examples are from [5]:

Example 2.2. Let X = [2,+∞). Define L, T : X → X by L(x) = 2x + 1 and

T (x) = x + 1 for all x ∈ X. Suppose that the property E.A. holds. Then there

exists a sequence {xn} in X such that limn→+∞ Lxn = limn→+∞ Txn = t for some

t ∈ X. It follows that limn→+∞ xn = t−1
2 and limn→+∞ xn = t − 1 and so, by

uniqueness of limit, t = 1 but t /∈ X. Therefore, L and T do not satisfy the Limit

Property.

Example 2.3. Let X = [0,+∞). Define L, T : X → X by L(x) = 3
4x and T (x) = x

4

for all x ∈ X. Consider the sequence xn = { 1
n}n∈N in X. Clearly, limn→+∞ Lxn =

limn→+∞ Txn = 0 ∈ X , so L and T satisfy the Limit Property.

Let the nondecreasing function ϕ : [0,+∞) → [0,+∞) satisfies following properties

(see [6]):

(M1) limn→+∞ ϕn(t) = 0, for all t ∈ (0,+∞),

(M2) ϕ(t) < t for all t ∈ (0,+∞),

(M3) ϕ(0) = 0.

The set of all functions such as ϕ is denoted by Φ.

3. Main Results

The following theorem is our main result :

Theorem 3.1. Let (X,S) be an S-metric space and A,B,H, T : X → X be four

self-mappings such that:

(a) S(Ax,Ax,By) ≤ ϕ(max{S(Hx,Hx, Ty), S(Hx,Hx,By), S(Ty, Ty,By)}), for

all x, y ∈ X and ϕ ∈ Φ,

(b) B(X) ⊆ H(X) and A(X) ⊆ T (X),

(c) (A,H) or (B, T ) satisfies the Limit Property,

(d) A(X), B(X),H(X) or T (X) is a closed subset of X.

Then (A,H) and (B, T ) have a coincidence point. Further, if (A,H) and (B, T ) are

weakly compatible, then A,B,H and T have a unique common fixed point in X.

Proof. Suppose (B, T ) satisfies the Limit Property. Then there exists a sequence

{xn} in X such that limn→+∞Bxn = limn→+∞ Txn = t, for some t ∈ X. Since

B(X) ⊆ H(X), there exists a sequence {yn} in X such that Bxn = Hyn. Hence
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limn→+∞Hyn = t. We will show that limn→+∞Ayn = t. We have:

S(Ayn, Ayn, Bxn)

≤ ϕ(max{S(Hyn,Hyn, Txn), S(Hyn,Hyn, Bxn), S(Txn, Txn, Bxn)}),

so,

max{S(Hyn,Hyn, Txn), S(Hyn,Hyn, Bxn), S(Txn, Txn, Bxn)}

=

 S(Hyn,Hyn, Txn) or
S(Hyn,Hyn, Bxn) or
S(Txn, Txn, Bxn).

Hence,

S(Ayn, Ayn, Bxn)

≤ ϕ(max{S(Hyn,Hyn, Txn), S(Hyn,Hyn, Bxn), S(Txn, Txn, Bxn)})

=

 ϕ(S(Hyn,Hyn, Txn)) or
ϕ(S(Hyn,Hyn, Bxn)) or
ϕ(S(Txn, Txn, Bxn)).

Assume that S(Ayn, Ayn, Bxn) ≤ limn→+∞ S(Hyn,Hyn, Txn). Since ϕ(t) ≤ t for

all t ∈ [0,∞), then, by taking limit we have:

lim
n→+∞

S(Ayn, Ayn, Bxn) ≤ lim
n→+∞

S(Hyn,Hyn, Txn),

by Lemma 2.2, limn→+∞ S(Hyn,Hyn, Txn) = S(t, t, t) = 0, that is,

limS(Ayn, Ayn, Bxn) = 0.

The above equality holds similarly for other cases.

By Definition 2.1(iii) and Lemma 2.1, we have:

S(Ayn, Ayn, t) ≤ 2S(Ayn, Ayn, Bxn) + S(t, t, Bxn)

= 2S(Ayn, Ayn, Bxn) + S(Bxn, Bxn, t).

Now by taking limit and using third part of Lemma 2.2 we have, limS(Ayn, Ayn, t) =

0, hence by Definition 2.2, limn→+∞Ayn = t. That is,

limn→+∞Ayn = limn→+∞Bxn = limn→+∞Hyn = limn→+∞ Txn = t.

Suppose that H(X) is a closed subset of X, then, t = Hu for some u ∈ X. We show

that Au = Hu = t. From (a), we have:

S(Au,Au,Bxn) ≤ ϕ(max{S(Hu,Hu, Txn), S(Hu,Hu,Bxn), S(Txn, Txn, Bxn)}).
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Without loss of generality, assume that

ϕ(max{S(Hu,Hu, Txn), S(Hu,Hu,Bxn), S(Txn, Txn, Bxn)}) ≤ ϕ(S(Hu,Hu, Txn)),

then,

S(Au,Au,Bxn) ≤ ϕ(max{S(Hu,Hu, Txn), S(Hu,Hu,Bxn), S(Txn, Txn, Bxn)})

≤ ϕ(S(Hu,Hu, Txn))

≤ S(Hu,Hu, Txn),

by taking limit, we have:

lim
n→+∞

S(Au,Au,Bxn) ≤ lim
n→+∞

S(Hu,Hu, Txn)

Lemma2.1
==== lim

n→+∞
S(Txn, Txn,Hu)

==== lim
n→+∞

S(Txn, Txn, t)

Lemma2.4
==== lim

n→+∞
S(t, t, t) = 0,

Hence, limn→+∞ S(Au,Au,Bxn) = 0. Now, observe that

S(Au,Au, t) ≤ S(Au,Au,Bxn) + S(Au,Au,Bxn) + S(t, t, Bxn)

= 2S(Au,Au,Bxn) + S(Bxn, Bxn, t),

by taking limit and the fact that limn→+∞ S(Bxn, Bxn, t) = S(t, t, t) = 0, we have,

S(Au,Au, t) = 0, therefore Au = t.

Hence, u is a coincidence point of the pair (A,H). Since A(X) ⊆ T (X), there

exists v ∈ X such that Au = Tv. We claim that Tv = Bv. Suppose that Tv ̸= Bv,

by hypothesis (a) and by (M2), we have:

S(Au,Au,Bv) ≤ ϕ(max{S(Hu,Hu, Tv), S(Hu,Hu,Bv), S(Tv, Tv,Bv)})

= ϕ(max{0, S(Au,Au,Bv), S(Au,Au,Bv)})

= ϕ(S(Au,Au,Bv))

< S(Au,Au,Bv).

This is a contradiction. Hence Au = Bv and Tv = Bv. So (B, T ) has a coincidence

point. Therefore, we have Bv = Tv = Hu = Au.

Now, if B and T are weakly compatible, then we have BTv = TBv = TTv = BBv

and the weak compatibility of A and H implies that AHu = HAu. Hence, AAu =

AHu = HAu = HHu. We show that Au is a common fixed point of A,B,H and
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T . Suppose that AAu ̸= Au. By hypothesis (a) and by (M2), we have:

S(AAu,AAu,Au) = S(AAu,AAu,Bv)

≤ ϕ(max{S(HAu,HAu, Tv), S(HAu,HAu,Bv), S(Tv, Tv,Bv)})

= ϕ(max{S(AAu,AAu,Bv), S(AAu,AAu,Bv), S(Bv,Bv,Bv)}

= ϕ(max{S(AAu,AAu,Bv), S(AAu,AAu,Bv), 0}

= ϕ(S(AAu,AAu,Bv))

< S(AAu,AAu,Bv).

This is a contradiction. Hence, Au = AAu = Bv. Therefore, Au = AAu = HAu is

a common fixed point of A and H. By a similar argument, Bv is a common fixed

point of B and T . Since Au = Bv, we deduce that Au is a common fixed point

of A,B,H and T . Only uniqueness of common fixed point has remained. Suppose

that w and z are two different common fixed points of A,B,H and T , then, by

hypothesis (a) and by (M2), we have:

S(w,w, z) = S(Aw,Aw,Bz)

≤ ϕ(max{S(Hw,Hw, Tz), S(Hw,Hw,Bz), S(Tz, Tz,Bz)})

= ϕ(max{S(w,w, z), S(w,w, z), S(z, z, z)})

= ϕ(S(w,w, z))

< S(w, z, z),

which is a contradiction. Hence, w = z. Therefore, A,B,H and T have a unique

common fixed point. �

By taking H = T in Theorem 3.1, the results for three self-mappings A,B and T

are satisfied. We have the following corollary:

Corollary 3.1. Let (X,S) be an S-metric space and A,B,H : X → X be three self

mappings such that:

(a) S(Ax,Ax,By) ≤ ϕ(max{S(Hx,Hx,Hy), S(Hx,Hx,By), S(Hy,Hy,By)}), where
ϕ ∈ Φ, for all x, y ∈ X.

(b) A(X) ⊆ H(X) and B(X) ⊆ H(X),

(c) (A,H) or (B,H) satisfies the Limit Property,

(d) A(X), B(X) or H(X) is a closed subset of X.

Then the pairs (A,H) and (B,H) have a coincidence point. Further, if (A,H) and
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(B,H) are weakly compatible, then A,B and H have a unique common fixed point

in X.

Example 3.1. Equip X = [1,+∞] with the maximum S-metric. Define A,B,H :

X → X by Ax = x, Bx = 2x − 1 and Hx = x2 for all x ∈ X and ϕ : [0,+∞) →
[0,+∞) by ϕ(t) = t for all t ≥ 0. The pair (A,H) satisfies the Limit Property. Also,

the hypotheses (b) and (d) of Corollary 3.1 hold trivially. We have:

S(Ax,Ax,By) =

 0 if x = 2y − 1,
2y − 1 if x < 2y − 1,

x if 2y − 1 < x.

S(Hx,Hx,Hy) =

 y2 if x < y,
x2 if y < x,
0 if x = y.

S(Hx,Hx,By) =

 x2 if 2y − 1 < x2,
2y − 1 if x2 < 2y − 1,

0 if x2 = 2y − 1.

S(Hy,Hy,By) =

{
0 if y = 1,
y2 if y ̸= 1,

So for x < 2y − 1, x < y, x2 < 2y − 1, y ̸= 1, we have:

2y − 1 ≤ max{y2, 2y − 1} = y2.

For x < 2y − 1, x < y, 2y − 1 < x2 and y ̸= 1, we have:

2y − 1 ≤ max{y2, x2} = y2.

For y < x, 2y − 1 < x, y ̸= 1, we have:

x ≤ max{x2, y2} = x2.

So, the inequality (a) in Corollary 3.1 is correct(other cases are trivial). Hence, the

pairs (B,H) and (A,H) have a coincidence point. In addition, since (B,H) and

(A,H) are weakly compatible, so A,B and H have the unique common fixed point

1.

The major result of this paper is finding a solution for the following integral equation

by applying Corollary 3.1.

Let X = [0, 1] and C(X) be the space of all the real valued continuous functions

defined on X. Also, suppose that the S-metric on this space is as follows:

S(x, y, z) = sup
t∈X

|x(t)− z(t)|+ sup
t∈X

|y(t)− z(t)|, for all x, y, z ∈ C(X).
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Clearly (C(X),S) is a complete S-metric space.

Let p : X×R → R and q : X×X×R → R be two continuous functions and consider

the following integral equation:

(1) p(t, x(t)) =

∫
X
q(t, r, x(r))dr, x ∈ C(X).

We have the following theorem:

Theorem 3.2. Suppose T : X × R → [0,+∞) is a function such that:

(a) T (t, v(t)) ≤
∫
X q(t, r, u(r))dr ≤ p(t, v(t)) for all r, t ∈ X,

(b) p(t, v(t))− T (t, v(t)) ≤ k|p(t, v(t))− v(t)|, where k ∈ (0, 1).

Then the integral equation (1) has a solution in C(X).

Proof. Define (Ax)(t) =
∫
X q(t, r, x(r))dr and (Bx)(t) = p(t, x(t)). Now we have:

S(Ax,Ax,By) = 2 sup
t∈X

|(Ax)(t)− (By)(t)|

= 2 sup
t∈X

∣∣p(t, y(t))− ∫
X
q(t, r, x(t))dt

∣∣
≤ 2 sup

t∈X
|p(t, y(t))− T (t, y(t))|

≤ 2k sup
t∈X

|p(t, y(t))− y(t)| = kS(y, y,By).

We put H = idC(X) and ϕ(l) = kl for all l ≥ 0 and k ∈ (0, 1), so we have:

S(Ax,Ax,By) ≤ kS(y, y,By) = ϕ(S(y, y,By)) ≤
ϕ(max{S(x, x, y), S(x, x,By), S(y, y,By)}),

hence, hypothesis (a) of Corollary 3.1 is satisfied.

To prove the Limit Property, let {xn} be a sequence in X such that limn→+∞Axn =

t, assume yn = Axn. We show that for every n ∈ N, Byn = yn. Hence we have

limn→+∞ yn = t = limn→+∞Byn. We have:

S(Axn, Axn, Byn) ≤ kS(yn, yn, Byn)

⇒ S(yn, yn, Byn) ≤ kS(yn, yn, Byn)

⇒ kS(yn, yn, Byn) = 0.

Then, yn = Byn for every n ∈ N.
Also, since H(X) = X, both hypotheses (b) and (d) are satisfied. Obviously,

(A, idC(X)) and (B, idC(X)) are weakly compatible, hence there is a unique solu-

tion of integral equation (1) in C(X). �
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The problem of dynamic programming related to a multistage process reduces to the

subject of solving functional equations. In this part, we want to solve the following

functional equation (2) by Corollary 3.1. Suppose that U and V are Banach spaces,

W ⊆ U is a state space, which is the set of the initial state, actions and transition

model of the process and D ⊆ V is a decision space, which is the set of possible

actions that are allowed for the process, we set:

Q : W → R

(2) Q(x) = sup
y∈D

{f(x, y) +K(x, y,Q(τ(x, y))}, x ∈ W,

where τ : W ×D → W , f : W ×D → R, K : W ×D×R → R. Let B(W ) denote the

space of all bounded real-valued functions on W . We equip B(W ) with the following

S-metric, which is obviously a complete S-metric space,

S(h, k, p) = sup
x∈W

|h(x)− p(x)|+ sup
x∈W

|k(x)− p(x)| for all h, k, p ∈ B(W ).

Now, we state the main result of this part.

Theorem 3.3. Let f : W × D → R and K : W × D × R → R be two bounded

functions and also τ : W × D → W be a function. Let A : B(W ) → B(W ) be

defined by

(A(h))(x) = sup
y∈D

{f(x, y) +K(x, y, (h)(τ(x, y)))},

for all h ∈ B(W ) and x ∈ W . Suppose that the following condition holds:

(3) |K(x, y, h(τ(x, y)))−K(x, y, k(τ(x, y)))| ≤ 1

2
ϕ(|h(x)− k(x)|),

where x ∈ W , y ∈ D and ϕ ∈ Φ. Then the functional equation (2) has a unique

bounded solution.

Proof. We like to remind that (B(W ), S) is a complete S-metric space. Let ϵ be an

arbitrary positive number, x ∈ W and h1, h2 ∈ B(W ), then there exist y1, y2 ∈ D

such that

(A(h1))(x) < f(x, y1) +K(x, y1, h1(τ(x, y1))) +
ϵ

2
,(4)

(A(h2))(x) < f(x, y2) +K(x, y2, h2(τ(x, y2))) +
ϵ

2
,(5)

(A(h1))(x) ≥ f(x, y2) +K(x, y2, h1(τ(x, y2))),(6)

(A(h2))(x) ≥ f(x, y1) +K(x, y1, h2(τ(x, y1))).(7)
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Then by (4), (7) and (3) we have: (inequalities (6),(7) are true for all y1, y2 ∈ D),

(A(h1))(x)− (A(h2))(x) < K(x, y1, h1(τ(x, y1)))−K(x, y1, h2(τ(x, y1))) +
ϵ

2

≤ |K(x, y1, h1(τ(x, y1)))−K(x, y1, h2(τ(x, y1)))|+
ϵ

2

≤ 1

2
(ϕ(|h1(x)− h2(x)|) + ϵ).

Therefore we get:

(8) (A(h1))(x)− (A(h2))(x) ≤
1

2
(ϕ(|h1(x)− h2(x)|) + ϵ).

Similarly, by (5) , (6) and (3), we obtain:

(9) (A(h2))(x)− (A(h1))(x) ≤
1

2
(ϕ(|h1(x)− h2(x)|) + ϵ).

Therefore, by(8) and (9), we have:

(10) 2|(A(h1))(x)− (A(h2))(x)| ≤ ϕ(|h1(x)− h2(x)|) + ϵ.

which implies

(11) S
(
(A(h1))(x), (A(h1))(x), (A(h2))(x)

)
< ϕ

(
S(h1(x), h1(x), h2(x))

)
+ ϵ.

Since ϵ > 0 is arbitrary, we can deduce that

S
(
(A(h1))(x)), (A(h1))(x)), (A(h2))(x))

)
≤ ϕ

(
S(h1(x), h1(x), h2(x))

)
.

Thus, all the hypothesis of Corollary 3.1 are satisfied with A = B and H = idB(W ),

the identity map on B(W ). Therefore, functional equation (2) has a unique bounded

solution. �

Example 3.2. Let consider the following functional equation

(12) (A(h))(x) = sup
y∈D

{
arctan(x+ 3|y|) + 1

2
ln
(
1 + x+

1

1 + |y|
+ |h(x)|

)}
for x ∈ [0, 1], where W = [0, 1], D = R. Then,

f : [0, 1]× R → R is defined by f(x, y) = arctan(x+ 3|y|),
τ : [0, 1]× R → [0, 1] is defined by τ(x, y) = x, and

K : [0, 1]× R× R → R is defined by K(x, y, t) = 1
2 ln(1 + x+ 1

1+|y| + |t|).

It’s clear that |f(x, y)| ≤ π
2 and |K(x, y, 0)| =

∣∣1
2 ln(1 + x + 1

1+|y|)
∣∣ < ln 3 for all

x ∈ [0, 1] and all y ∈ R.
Hence the first assumption of Theorem 3.3 is satisfied. Furthermore, consider the

continuous function ϕ(h) = ln(1 + h) for all h ∈ [0,∞]. Therefore, for all x ∈ [0, 1]
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and all y, k ∈ R (we can assume that |h| > |k| without loss of generality), it follows
that: ∣∣K(x, y, h(x))−K(x, y, k(x))

∣∣
=

∣∣∣∣12 ln(1 + x+
1

1 + |y|
+ |h(x)|)− 1

2
ln(1 + x+

1

1 + |y|
+ |k(x)|)

∣∣∣∣
=
1

2

∣∣∣∣ ln 1 + x+ 1
1+|y| + |h(x)|

1 + x+ 1
1+|y| + |k(x)|

∣∣∣∣
=
1

2

∣∣∣∣ ln 1 + x+ 1
1+|y| + |k(x)|+ (|h(x)| − |k(x)|)
1 + x+ 1

1+|y| + |k(x)|

∣∣∣∣
=
1

2

∣∣∣∣ ln(1 + (|h(x)| − |k(x)|)
1 + x+ 1

1+|y| + |k(x)|

)∣∣∣∣
≤1

2

∣∣∣∣ ln(1 + (|h(x)| − |k(x)|)
∣∣∣∣

=
1

2
ln(1 + (|h(x)| − |k(x)|) = 1

2
ln(1 +

∣∣|h(x)| − |k(x)|
∣∣

≤1

2
ln(1 + |h(x)− k(x)|) = 1

2
ϕ(|h(x)− k(x)|.

Then inequality (3) in theorem (3.3) also holds where x ∈ [0, 1], y ∈ R and ϕ ∈ Φ,

which implies functional equation (12) has a unique bounded solution h ∈ B[0, 1].
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