DOI QR코드

DOI QR Code

Effect of Silane Coupling Treatment on the Joining and Sealing Performance between Polymer and Anodized Aluminum Alloy

  • Received : 2020.11.09
  • Accepted : 2021.02.22
  • Published : 2021.03.27

Abstract

In the fabrication of joined materials between anodized aluminum alloy and polymer, the performance of the metal-polymer joining is greatly influenced by the chemical properties of the oxide film. In a previous study, the dependence of physical joining strength on the thickness, structure, pore formation, and surface roughness of films formed on aluminum alloys is investigated. In this study, we investigated the effect of silane coupling treatment on the joining strength and sealing performance between aluminum alloy and polymer. After a two-step anodization process with additional treatment by silane, the oxide film with chemically modified nanostructure is strongly bonded to the polymer through physical and chemical reactions. More specifically, after the two-step anodization with silane treatment, the oxide film has a three-dimensional (3D) nanostructure and the silane components are present in combination with hydroxyl groups up to a depth of 150 nm. Accordingly, the joining strength between the polymer and aluminum alloy increases from 29 to 35 MPa, and the helium leak performance increases from 10-2-10-4 to 10-8-10-9 Pa ㎥ s-1.

Keywords

References

  1. S. H. Lee, H. Yashiro and S. Z. Kure-Chu, J. Korean Inst. Surf. Eng., 53, 144 (2020). https://doi.org/10.5695/JKISE.2020.53.4.144
  2. S. H. Lee, H. Yashiro and S. Z. Kure-Chu, Korean J. Mater. Res., 29, 288 (2019). https://doi.org/10.3740/mrsk.2019.29.5.288
  3. N. Z. Borba, L. Blaga, J. F. dos Santos and S. T. Amancio-Filho, Mater. Lett., 215, 31 (2018). https://doi.org/10.1016/j.matlet.2017.12.033
  4. Y. Kajihara, Y. Tamura, F. Kimura, G. Suzuki, N. Nakura and E. Yamaguchi, CIRP Annals, 67, 591 (2018). https://doi.org/10.1016/j.cirp.2018.04.112
  5. D. Quan, N. Murphy and A. Ivankovic, Int. J. Adhes. Adhes., 77, 138 (2017). https://doi.org/10.1016/j.ijadhadh.2017.05.001
  6. Y. J. Chen, T. M. Yue and Z. N. Guo, J. Mater. Process. Technol., 249, 441 (2017). https://doi.org/10.1016/j.jmatprotec.2017.06.036
  7. E. E. Feistauer, R. P. M. Guimaraes, T. Ebel, J. F. D. Santos and S. T. Amancio-Filhoac, Mater. Lett., 170, 1 (2016). https://doi.org/10.1016/j.matlet.2016.01.137
  8. A. J. Al-Obaidi, Ph. D. Thesis, p.1-246, University of Sheffield (2018).
  9. F. Lambiase, A. Paoletti, V. Grossi and S. Genna, J. Mater. Process. Technol., 250, 379 (2017). https://doi.org/10.1016/j.jmatprotec.2017.08.005
  10. F. Lambiase and S. Genna, Int. J. Adhes. Adhes., 84, 265 (2018). https://doi.org/10.1016/j.ijadhadh.2018.04.004
  11. O. Izadi, P. Mosaddegh, M. Silani and M. Dinari, J. Manuf. Process., 30, 217 (2017). https://doi.org/10.1016/j.jmapro.2017.09.022
  12. A. B. Abibe, M. Sonego, J. F. D. Santos, L. B. Canto and S. T. Amancio-Filho, Mater. Des., 92, 632 (2016). https://doi.org/10.1016/j.matdes.2015.12.087
  13. F. C. Liu, J. Liao, Y. Gao and K. Nakata, Sci. Technol. Welding and Joining, 20, 291 (2015). https://doi.org/10.1179/1362171815Y.0000000012
  14. S. T. Abrahami, T. Hauffman, J. M. M. D. Kok, J. M. C. Mol and H. Terryn, J. Phys. Chem. C, 120, 19670 (2016). https://doi.org/10.1021/acs.jpcc.6b04957
  15. Y. Xie, C. A. S. Hill, Z. Xiao, H. Militz and C. Mai, Compos. Part A: Appl. Sci. Manuf., 41, 806 (2010). https://doi.org/10.1016/j.compositesa.2010.03.005
  16. H. Masuda and K. Fukuda, Science, 268, 1466 (1995). https://doi.org/10.1126/science.268.5216.1466
  17. S.-Z. Kure-Chu, K. Osaka, H. Yashiro, H. Segawa, K. Wada and S. Inoue, J. Electrochem. Soc., 162, C24 (2015). https://doi.org/10.1149/2.0511501jes
  18. O. Jessensky, F. Muller and U. Gosele, Appl. Phys. Lett., 72, 1173 (1998). https://doi.org/10.1063/1.121004
  19. S. T. Abrahami, Ph. D. Thesis. Delft University of Technology (2016).
  20. B. Arkles, Silane coupling agents: connecting across boundaries, p. 9, Morrisville (2003).