References
- Eurostat. (27 March 2018). Energy Statistics-An Overview. Available online. https://ec.europa.eu
- O. Elma & U. S. Selamogullar. (2017). A survey of a residential load profile for demand side management systems. IEEE Internatdional Conference on Smart Energy Grid Engineering (SEGE). DOI : 10.1109/SEGE.2017.8052781
- S. Mostafavi & R. W. Cox. (2017). An unsupervised approach in learning load patterns for non-intrusive load monitoring. IEEE 14th International Conference on Networking. Sensing and Control (ICNSC). DOI : 10.1109/icnsc.2017.8000164
- L. Perez-Lombard, J. Ortiz & C. Pout. (2008). A review on buildings energy consumption information. Energy and Build. 40(3), 394-398. DOI : 10.1016/j.enbuild.2007.03.007
- D. Lee & C-C. Cheng. (2016). Energy savings by energy management systems: A review. Renewable and Sustainable Energy Reviews. 56, 760-777. DOI :10.1016/j.rser.2015.11.067
- S. Katipamula & M. Brambley. (2005). Review Article: Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems-A Review, Part II. HVAC&R Reserach. 11(2), 169-187. DOI :10.1080/10789669.2005.10391133
- M. Zeifman & K. Roth. (2011). Viterbi algorithm with sparse transitions (VAST) for nonintrusive load monitoring. IEEE Symposium on Computational Intelligence Applications In Smart Grid (CIASG). 1-8. DOI : 10.1109/CIASG.2011.5953328
- C. Ogwumike, M. Short & M. Denai. (2015). Near-optimal scheduling of residential smart home appliances using heuristic approach. IEEE International Conference on Industrial Technology (ICIT). 3128-3133. DOI : 10.1109/ICIT.2015.7125560
- V. Indragandhi, R. Logesh, V. Subramaniyaswamy, V. Varadarajan, P. Siarry & L. Uden. (2018). Multi-objective optimization and energy management in renewable based AC/DC microgrid. Computers & Electrical Engineering. 70, 179-198. DOI : 10.1016/j.compeleceng.2018.01.023
- K. Buchanan, N. Banks, I. Preston & R. Russo, (2016). The British public's perception of the UK smart metering initiative: Threats and opportunities. Energy Policy. 91. 87-97. DOI : 10.1016/j.enpol.2016.01.003
- G. C. Koutitas & L. Tassiulas. (2016). Low cost disaggregation of smart meter sensor data. IEEE Sensors. J. 16(6), 1665-1673. DOI : 10.1109/JSEN.2015.2501422
- G. W. Hart. (1992). Nonintrusive appliance load monitoring. Proceedings of the IEEE. 80(12), 1870-1891. DOI : 10.1109/5.192069
- R. Arghandeh & Y. Zhou. (2018). Big Data Application in Power Systems, Amsterdam : Elsevier Science. DOI : 10.1016/c2016-0-00194-8
- D. Egarter, V. P. Bhuvana & W. Elmenreich. (2015). PALDi: Online Load Disaggregation via Particle Filtering. IEEE Transactions on Instrumentation and Measurement. 64(2), 467-477. DOI : 10.1109/tim.2014.2344373
- A. Cominola, M. Giuliani, D. Piga, A. Castelletti & A. E. Rizzoli. (2017). A Hybrid Signature-based Iterative Disaggregation algorithm for Non-Intrusive Load Monitoring. Applied Energy 185, 331-344. DOI : 10.1016/j.apenergy.2016.10.040
- C. Gisler, A. Ridi, D. Zuerey, O. A. Khaled & J. Hennebert. (2013). Appliance consumption signature database and recognition test protocols. 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA), 336-341. DOI : 10.1109/wosspa.2013.6602387
- A. S. Bouhouras, P. A. Gkaidatzis, E. Panagiotou, N. Poulakis & G. C. Christoforidis. A NILM algorithm with enhanced disaggregation scheme under harmonic current vectors. Energy and Buildings, 183(15), 392-407 DOI : 10.1016/j.enbuild.2018.11.013
- T. Hassan, F. Javed & N. Arshad. (2014). An empirical investigation of V-I trajectory based load signatures for non-intrusive load monitoring. IEEE Transactions on Smart Grid, 5(2), 870-878. DOI : 10.1109/TSG.2013.2271282
- Y. H. Lin & M-S. Tsai. (2015). An advanced home energy management system facilitated by nonintrusive load monitoring with automated multiobjective power scheduling. Transactions on Smart Grid, 6(4), 1839-1851. DOI : 10.1109/TSG.2015.2388492
- P. Bilski & W. Winiecki. Generalized algorithm for the non-intrusive identification of electrical appliances in the household. IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), 730-735. DOI : 10.1109/IDAACS.2017.8095186
- Y. Kim, S. Kong, R. Ko & S. -K. Joo. (2014). Electrical event identification technique for monitoring home appliance load using load signatures. IEEE International Conference on Consumer Electronics (ICCE), 296-297. DOI : 10.1109/ICCE.2014.6776012
- D. Murray, L. Stankovic, V. Stankovic, S. Lulic, S. Sladojevic, (2019). Transferability of neural network approaches for low-rate energy disaggregation. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 8330-8334. DOI : 10.1109/ICASSP.2019.8682486
- K. S. Barsim & B. Yang. (5 Feb 2018). On the Feasibility of Generic Deep Disaggregation for Single-Load Extraction. New york : Cornell University https://arxiv.org/abs/1802.02139v1
- X. Wu, X. Han & K. X. Liang. (2019). Event-based non-intrusive load identification algorithm for residential loads combined with underdetermined decomposition and characteristic filtering. IET Generation, Transmission & Distribution, 13(1), 99-107. DOI : 10.1049/iet-gtd.2018.6125
- I. Cavdar & V. Faryad. (2019). New Design of a Supervised Energy Disaggregation Model Based on the Deep Neural Network for a Smart Grid Energies, 12(7), 1217. DOI : 10.3390/en12071217
- W. He & Y. Chai. (2016). An empirical study on energy disaggregation via deep learning. Proceedings of the 2016 2nd International Conference on Artificial Intelligence and Industrial Engineering (AIIE 2016). DOI : 10.2991/aiie-16.2016.77
- L. Mauch & B. Yang. (2015). A new approach for supervised power disaggregation by using a deep recurrent LSTM network. IEEE Global Conference on Signal and Information Processing (GlobalSIP), 63-67. DOI : 10.1109/GlobalSIP.2015.7418157
- F. C. C. Garcia, C. M. C. Creayla & E. Q. B. Macabebe. (2017). Development of an intelligent system for smart home energy disaggregation using stacked denoising autoencoders. Procedia Computer Science, 105, 248-255. DOI : 10.1016/j.procs.2017.01.218
- S. J. Cho & T. Y. Yoon. (2016). Seasonal pattern analysis and implications for residential electricity demand. Ulsan : KEEI. https://www.nkis.re.kr:4445/subject_view1.do?otpId=KEEI00047525&otpSeq=0&eoSeq=0