DOI QR코드

DOI QR Code

Ibuprofen Increases the Hepatotoxicity of Ethanol through Potentiating Oxidative Stress

  • Kim, Minjeong (College of Pharmacy, Ewha Womans University) ;
  • Lee, Eugenia Jin (Department of Biological Sciences, Columbia College, Columbia University) ;
  • Lim, Kyung-Min (College of Pharmacy, Ewha Womans University)
  • Received : 2020.06.15
  • Accepted : 2020.08.25
  • Published : 2021.03.01

Abstract

Over 30 million prescriptions of NSAIDs (non-steroidal anti-inflammatory drugs) are issued every year. Considering that these drugs are available without a prescription as over the counter (OTC) drugs, their use will be astronomical. With the increasing use of NSAIDs, their adverse effects are drawing attention. Especially, stomach bleeding, kidney toxicity, liver toxicity, and neurological toxicity are reported as common. Ibuprofen, one of the extensively used NSAIDs along with aspirin, can also induce liver toxicity, but few studies are addressing this point. Here we examined the liver toxicity of ibuprofen and investigated whether co-exposure to ethanol can manifest synergistic effects. We employed 2D and 3D cultured human hepatoma cells, HepG2 to examine the synergistic hepatotoxicity of ibuprofen and alcohol concerning cell viability, morphology, and histology of 3D spheroids. As a result, ibuprofen and alcohol provoked synergistic hepatotoxicity against hepatocytes, and their toxicity increased prominently in 3D culture upon extended exposure. Oxidative stress appeared to be the mechanisms underlying the synergistic toxicity of ibuprofen and alcohol as evidenced by increased production of ROS and expression of the endogenous antioxidant system. Collectively, this study has demonstrated that ibuprofen and EtOH can induce synergistic hepatotoxicity, providing a line of evidence for caution against the use of ibuprofen in combination with alcohol.

Keywords

References

  1. Agency for Healthcare Research and Quality (AHRQ) (2016) Ibuprofen Drug Usage Statistics, United States, 2005-2015.
  2. Aithal, G. P. and Day, C. P. (2007) Nonsteroidal anti-inflammatory drug-induced hepatotoxicity. Clin. Liver Dis. 11, 563-575. https://doi.org/10.1016/j.cld.2007.06.004
  3. Bang, C. Y., Byun, J. H., Choi, H. K., Choi, J. S. and Choung, S. Y. (2016) Protective effects of Ecklonia stolonifera extract on ethanolinduced fatty liver in rats. Biomol. Ther. (Seoul) 24, 650-658. https://doi.org/10.4062/biomolther.2016.176
  4. Bessone, F. (2010) Non-steroidal anti-inflammatory drugs: what is the actual risk of liver damage? World J. Gastroenterol. 16, 5651-5661. https://doi.org/10.3748/wjg.v16.i45.5651
  5. Boureau, F., Schneid, H., Zeghari, N., Wall, R. and Bourgeois, P. (2004) The IPSO study: ibuprofen, paracetamol study in osteoarthritis. A randomised comparative clinical study comparing the efficacy and safety of ibuprofen and paracetamol analgesic treatment of osteoarthritis of the knee or hip. Ann. Rheum. Dis. 63, 1028-1034. https://doi.org/10.1136/ard.2003.011403
  6. Cardile, S., Martinelli, M., Barabino, A., Gandullia, P., Oliva, S., Di Nardo, G., Dall'Oglio, L., Rea, F., de'Angelis, G. L., Bizzarri, B., Guariso, G., Masci, E., Staiano, A., Miele, E. and Romano, C. (2016) Italian survey on non-steroidal anti-inflammatory drugs and gastrointestinal bleeding in children. World J. Gastroenterol. 22, 1877-1883. https://doi.org/10.3748/wjg.v22.i5.1877
  7. Chang, S. Y., Li, W., Traeger, S. C., Wang, B., Cui, D., Zhang, H., Wen, B. and Rodrigues, A. D. (2008) Confirmation that cytochrome P450 2C8 (CYP2C8) plays a minor role in (S)-(+)- and (R)-(-)-ibuprofen hydroxylation in vitro. Drug Metab. Dispos. 36, 2513-2522. https://doi.org/10.1124/dmd.108.022970
  8. Edmondson, R., Broglie, J. J., Adcock, A. F. and Yang, L. (2014) Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev. Technol. 12, 207-218. https://doi.org/10.1089/adt.2014.573
  9. Flora, S. J. (2009) Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxid. Med. Cell. Longev. 2, 191-206. https://doi.org/10.4161/oxim.2.4.9112
  10. Freytag, A., Quinzler, R., Freitag, M., Bickel, H., Fuchs, A., Hansen, H., Hoefels, S., Konig, H. H., Mergenthal, K., Riedel-Heller, S. G., Schon, G., Weyerer, S., Wegscheider, K., Scherer, M., van den Bussche, H., Haefeli, W. E. and Gensichen, J. (2014) Use and potential risks of over-the-counter analgesics. Schmerz 28, 175-182. https://doi.org/10.1007/s00482-014-1415-5
  11. Garcia Rodriguez, L. A., Williams, R., Derby, L. E., Dean, A. D. and Jick, H. (1994) Acute liver injury associated with nonsteroidal anti-inflammatory drugs and the role of risk factors. Arch. Intern. Med. 154, 311-316. https://doi.org/10.1001/archinte.1994.00420030117012
  12. Ghosh, R., Alajbegovic, A. and Gomes, A. V. (2015) NSAIDs and cardiovascular diseases: role of reactive oxygen species. Oxid. Med. Cell. Longev. 2015, 536962. https://doi.org/10.1155/2015/536962
  13. Giordano, F. J. (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J. Clin. Invest. 115, 500-508. https://doi.org/10.1172/JCI200524408
  14. Goldkind, L. and Laine, L. (2006) A systematic review of NSAIDs withdrawn from the market due to hepatotoxicity: lessons learned from the bromfenac experience. Pharmacoepidemiol. Drug Saf. 15, 213-220. https://doi.org/10.1002/pds.1207
  15. Grant, S., Millar, K. and Kenny, G. (2000) Blood alcohol concentration and psychomotor effects. Br. J. Anaesth. 85, 401-406. https://doi.org/10.1093/bja/85.3.401
  16. Ha, H. L., Shin, H. J., Feitelson, M. A. and Yu, D. Y. (2010) Oxidative stress and antioxidants in hepatic pathogenesis. World J. Gastroenterol. 16, 6035-6043. https://doi.org/10.3748/wjg.v16.i48.6035
  17. Jana, N. R. (2008) NSAIDs and apoptosis. Cell. Mol. Life Sci. 65, 1295-1301. https://doi.org/10.1007/s00018-008-7511-x
  18. Janssen, G. and Venema, J. (1985) Ibuprofen: plasma concentrations in man. J. Int. Med. Res. 13, 68-73. https://doi.org/10.1177/030006058501300110
  19. Joo, K. M., Kim, S., Koo, Y. J., Lee, M., Lee, S. H., Choi, D. and Lim, K. M. (2019) Development and validation of UPLC method for WST-1 cell viability assay and its application to MCTT HCETM eye irritation test for colorful substances. Toxicol. In Vitro 60, 412-419. https://doi.org/10.1016/j.tiv.2019.06.017
  20. Jurima-Romet, M., Crawford, K. and Huang, H. S. (1994) Comparative cytotoxicity of non-steroidal anti-inflammatory drugs in primary cultures of rat hepatocytes. Toxicol. In Vitro 8, 55-66. https://doi.org/10.1016/0887-2333(94)90208-9
  21. Kim, M., Lee, C. S. and Lim, K. M. (2019) Rhododenol activates melanocytes and induces morphological alteration at sub-cytotoxic levels. Int. J. Mol. Sci. 20, 5665. https://doi.org/10.3390/ijms20225665
  22. Lieber, C. S. (1990) Mechanism of ethanol induced hepatic injury. Pharmacol. Ther. 46, 1-41. https://doi.org/10.1016/0163-7258(90)90032-W
  23. Mates, J. M., Perez-Gomez, C. and Nunez de Castro, I. (1999) Antioxidant enzymes and human diseases. Clin. Biochem. 32, 595-603. https://doi.org/10.1016/S0009-9120(99)00075-2
  24. Mattson, M. P. and Camandola, S. (2001) NF-κB in neuronal plasticity and neurodegenerative disorders. J. Clin. Invest. 107, 247-254. https://doi.org/10.1172/JCI11916
  25. McGill, M. R. and Jaeschke, H. (2013) Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis. Pharm. Res. 30, 2174-2187. https://doi.org/10.1007/s11095-013-1007-6
  26. Prescott, L. F. (2000) Paracetamol, alcohol and the liver. Br. J. Clin. Pharmacol. 49, 291-301. https://doi.org/10.1046/j.1365-2125.2000.00167.x
  27. Riley, T. R. and Smith, J. P. (1998) Ibuprofen-induced hepatotoxicity in patients with chronic hepatitis C: a case series. Am. J. Gastroenterol. 93, 1563-1565. https://doi.org/10.1111/j.1572-0241.1998.00484.x
  28. Riordan, S. M. and Williams, R. (2002) Alcohol exposure and paracetamol-induced hepatotoxicity. Addict. Biol. 7, 191-206. https://doi.org/10.1080/13556210220120424
  29. Sanchez-Valle, V., Chavez-Tapia, N. C., Uribe, M. and Mendez-Sanchez, N. (2012) Role of oxidative stress and molecular changes in liver fibrosis: a review. Curr. Med. Chem. 19, 4850-4860. https://doi.org/10.2174/092986712803341520
  30. Slattery, J. T., Nelson, S. D. and Thummel, K. E. (1996) The complex interaction between ethanol and acetaminophen. Clin. Pharmacol. Ther. 60, 241-246. https://doi.org/10.1016/S0009-9236(96)90050-8
  31. Sooklert, K., Wongjarupong, A., Cherdchom, S., Wongjarupong, N., Jindatip, D., Phungnoi, Y., Rojanathanes, R. and Sereemaspun, A. (2019) Molecular and morphological evidence of hepatotoxicity after silver nanoparticle exposure: a systematic review, in silico, and ultrastructure investigation. Toxicol. Res. 35, 257-270. https://doi.org/10.5487/tr.2019.35.3.257
  32. Stark, L. A., Reid, K., Sansom, O. J., Din, F. V., Guichard, S., Mayer, I., Jodrell, D. I., Clarke, A. R. and Dunlop, M. G. (2007) Aspirin activates the NF-κB signalling pathway and induces apoptosis in intestinal neoplasia in two in vivo models of human colorectal cancer. Carcinogenesis 28, 968-976. https://doi.org/10.1093/carcin/bgl220
  33. Tolman, K. G. (1998) Hepatotoxicity of non-narcotic analgesics. Am. J. Med. 105, 13S-19S. https://doi.org/10.1016/S0002-9343(98)00070-9
  34. Toyokuni, S., Okamoto, K., Yodoi, J. and Hiai, H. (1995) Persistent oxidative stress in cancer. FEBS Lett. 358, 1-3. https://doi.org/10.1016/0014-5793(94)01368-B
  35. Zhen, A. X., Piao, M. J., Kang, K. A., Fernando, P., Kang, H. K., Koh, Y. S., Yi, J. M. and Hyun, J. W. (2019) Niacinamide protects skin cells from oxidative stress induced by particulate matter. Biomol. Ther. (Seoul), 27, 562-569. https://doi.org/10.4062/biomolther.2019.061
  36. Zhong, Z., Ramshesh, V. K., Rehman, H., Liu, Q., Theruvath, T. P., Krishnasamy, Y. and Lemasters, J. J. (2014) Acute ethanol causes hepatic mitochondrial depolarization in mice: role of ethanol metabolism. PLoS ONE 9, e91308. https://doi.org/10.1371/journal.pone.0091308

Cited by

  1. Discrimination of Lycium chinense and L. barbarum Based on Metabolite Analysis and Hepatoprotective Activity vol.25, pp.24, 2020, https://doi.org/10.3390/molecules25245835