DOI QR코드

DOI QR Code

Endoplasmic Reticulum Stress-Mediated p62 Downregulation Inhibits Apoptosis via c-Jun Upregulation

  • Yu, Wenjun (Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University) ;
  • Wang, Busong (Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University) ;
  • Zhou, Liang (Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University) ;
  • Xu, Guoqiang (Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University)
  • Received : 2020.05.20
  • Accepted : 2020.08.28
  • Published : 2021.03.01

Abstract

Cereblon (CRBN), a substrate receptor of cullin 4-RING E3 ligase (CRL4) regulates the ubiquitination and degradation of c-Jun, mediating the lipopolysaccharide-induced cellular response. However, the upstream signaling pathway that regulates this process is unknown. In this study, we describe how endoplasmic reticulum (ER) stress reversely regulates sequestosome-1 (p62)and c-Jun protein levels. Furthermore, our study reveals that expression of p62 attenuates c-Jun protein levels through the ubiquitinproteasome system. Conversely, siRNA knockdown of p62 elevates c-Jun protein levels. Immunoprecipitation and immunoblotting experiments demonstrate that p62 interacts with c-Jun and CRBN to form a ternary protein complex. Moreover, we find that CRBN knockdown completely abolishes the inhibitory effect of p62 on c-Jun. Using brefeldin A as an inducer of ER stress, we demonstrate that the p62/c-Jun axis participates in the regulation of ER stress-induced apoptosis, and that CRBN is required for this regulation. In summary, we have identified an upstream signaling pathway, which regulates p62-mediated c-Jun degradation. Our findings elucidate the underlying molecular mechanism by which p62/c-Jun axis regulates the ER stress-induced apoptosis, and provide a new molecular connection between ER stress and apoptosis.

Keywords

References

  1. Bossy-Wetzel, E., Bakiri, L. and Yaniv, M. (1997) Induction of apoptosis by the transcription factor c-Jun. EMBO J. 16, 1695-1709. https://doi.org/10.1093/emboj/16.7.1695
  2. Bustamante, H. A., Gonzalez, A. E., Cerda-Troncoso, C., Shaughnessy, R., Otth, C., Soza, A. and Burgos, P. V. (2018) Interplay between the autophagy-lysosomal pathway and the ubiquitin-proteasome system: a target for therapeutic development in Alzheimer's disease. Front. Cell. Neurosci. 12, 126. https://doi.org/10.3389/fncel.2018.00126
  3. Ciechanover, A. (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat. Rev. Mol. Cell Biol. 6, 79-87. https://doi.org/10.1038/nrm1552
  4. Del Prete, D., Rice, R. C., Rajadhyaksha, A. M. and D'Adamio, L. (2016) Amyloid precursor protein (APP) may act as a substrate and a recognition unit for CRL4CRBN and Stub1 E3 ligases facilitating ubiquitination of proteins involved in presynaptic functions and neurodegeneration. J. Biol. Chem. 291, 17209-17227. https://doi.org/10.1074/jbc.M116.733626
  5. Dikic, I. (2017) Proteasomal and autophagic degradation systems. Annu. Rev. Biochem. 86, 193-224. https://doi.org/10.1146/annurev-biochem-061516-044908
  6. Ding, W. X., Ni, H. M., Gao, W., Hou, Y. F., Melan, M. A., Chen, X., Stolz, D. B., Shao, Z. M. and Yin, X. M. (2007) Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J. Biol. Chem. 282, 4702-4710. https://doi.org/10.1074/jbc.M609267200
  7. Fuest, M., Willim, K., MacNelly, S., Fellner, N., Resch, G. P., Blum, H. E. and Hasselblatt, P. (2012) The transcription factor c-Jun protects against sustained hepatic endoplasmic reticulum stress thereby promoting hepatocyte survival. Hepatology 55, 408-418. https://doi.org/10.1002/hep.24699
  8. Gal, J., Strom, A. L., Kilty, R., Zhang, F. and Zhu, H. (2007) p62 accumulates and enhances aggregate formation in model systems of familial amyotrophic lateral sclerosis. J. Biol. Chem. 282, 11068-11077. https://doi.org/10.1074/jbc.M608787200
  9. Geetha, T., Seibenhener, M. L., Chen, L., Madura, K. and Wooten, M. W. (2008) p62 serves as a shuttling factor for TrkA interaction with the proteasome. Biochem. Biophys. Res. Commun. 374, 33-37. https://doi.org/10.1016/j.bbrc.2008.06.082
  10. Grice, G. L. and Nathan, J. A. (2016) The recognition of ubiquitinated proteins by the proteasome. Cell. Mol. Life Sci. 73, 3497-3506. https://doi.org/10.1007/s00018-016-2255-5
  11. Halazonetis, T. D., Georgopoulos, K., Greenberg, M. E. and Leder, P. (1988) c-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding affinities. Cell 55, 917-924. https://doi.org/10.1016/0092-8674(88)90147-x
  12. Hettinger, K., Vikhanskaya, F., Poh, M. K., Lee, M. K., de Belle, I., Zhang, J. T., Reddy, S. A. G. and Sabapathy, K. (2006) c-Jun promotes cellular survival by suppression of PTEN. Cell Death Differ. 14, 218-229. https://doi.org/10.1038/sj.cdd.4401946
  13. Hewitt, G., Carroll, B., Sarallah, R., Correia-Melo, C., Ogrodnik, M., Nelson, G., Otten, E. G., Manni, D., Antrobus, R., Morgan, B. A., von Zglinicki, T., Jurk, D., Seluanov, A., Gorbunova, V., Johansen, T., Passos, J. F. and Korolchuk, V. I. (2016) SQSTM1/p62 mediates crosstalk between autophagy and the UPS in DNA repair. Autophagy 12, 1917-1930. https://doi.org/10.1080/15548627.2016.1210368
  14. Hou, X. O., Si, J. M., Ren, H. G., Chen, D., Wang, H. F., Ying, Z., Hu, Q. S., Gao, F. and Wang, G. H. (2015) Parkin represses 6-hydroxydopamine-induced apoptosis via stabilizing scaffold protein p62 in PC12 cells. Acta Pharmacol. Sin. 36, 1300-1307. https://doi.org/10.1038/aps.2015.54
  15. Huang, X., Wang, X. N., Yuan, X. D., Wu, W. Y., Lobie, P. E. and Wu, Z. (2018) XIAP facilitates breast and colon carcinoma growth via promotion of p62 depletion through ubiquitination-dependent proteasomal degradation. Oncogene 38, 1448-1460. https://doi.org/10.1038/s41388-018-0513-8
  16. Ichimura, Y., Waguri, S., Sou, Y. S., Kageyama, S., Hasegawa, J., Ishimura, R., Saito, T., Yang, Y., Kouno, T., Fukutomi, T., Hoshii, T., Hirao, A., Takagi, K., Mizushima, T., Motohashi, H., Lee, M. S., Yoshimori, T., Tanaka, K., Yamamoto, M. and Komatsu, M. (2013) Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol. Cell 51, 618-631. https://doi.org/10.1016/j.molcel.2013.08.003
  17. Iurlaro, R. and Munoz-Pinedo, C. (2016) Cell death induced by endoplasmic reticulum stress. FEBS J. 283, 2640-2652. https://doi.org/10.1111/febs.13598
  18. Jain, A., Lamark, T., Sjottem, E., Larsen, K. B., Awuh, J. A., Overvatn, A., McMahon, M., Hayes, J. D. and Johansen, T. (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J. Biol. Chem. 285, 22576-22591. https://doi.org/10.1074/jbc.M110.118976
  19. Jian, Y., Gao, W., Geng, C., Zhou, H., Leng, Y., Li, Y. and Chen, W. (2017) Arsenic trioxide potentiates sensitivity of multiple myeloma cells to lenalidomide by upregulating cereblon expression levels. Oncol. Lett. 14, 3243-3248. https://doi.org/10.3892/ol.2017.6502
  20. Jin, Z., Li, Y., Pitti, R., Lawrence, D., Pham, V. C., Lill, J. R. and Ashkenazi, A. (2009) Cullin 3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell 137, 721-735. https://doi.org/10.1016/j.cell.2009.03.015
  21. Komatsu, M., Kurokawa, H., Waguri, S., Taguchi, K., Kobayashi, A., Ichimura, Y., Sou, Y. S., Ueno, I., Sakamoto, A., Tong, K. I., Kim, M., Nishito, Y., Iemura, S., Natsume, T., Ueno, T., Kominami, E., Motohashi, H., Tanaka, K. and Yamamoto, M. (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12, 213-223. https://doi.org/10.1038/ncb2021
  22. Korolchuk, V. I., Mansilla, A., Menzies, F. M. and Rubinsztein, D. C. (2009) Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol. Cell 33, 517-527. https://doi.org/10.1016/j.molcel.2009.01.021
  23. Korolchuk, V. I., Menzies, F. M. and Rubinsztein, D. C. (2010) Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS Lett. 584, 1393-8139. https://doi.org/10.1016/j.febslet.2009.12.047
  24. Kouzarides, T. and Ziff, E. (1988) The role of the leucine zipper in the fos-jun interaction. Nature 336, 646-651. https://doi.org/10.1038/336646a0
  25. Lamark, T., Kirkin, V., Dikic, I. and Johansen, T. (2009) NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle 8, 1986-1990. https://doi.org/10.4161/cc.8.13.8892
  26. Levine, B. and Kroemer, G. (2008) Autophagy in the pathogenesis of disease. Cell 132, 27-42. https://doi.org/10.1016/j.cell.2007.12.018
  27. Lin, J. F., Lin, Y. C., Tsai, T. F., Chen, H. E., Chou, K. Y. and Hwang, T. I. S. (2017) Cisplatin induces protective autophagy through activation of BECN1 in human bladder cancer cells. Drug Des. Devel. Ther. 11, 1517-1533. https://doi.org/10.2147/DDDT.S126464
  28. Lippai, M. and Low, P. (2014) The role of the selective adaptor p62 and ubiquitin-like proteins in autophagy. Biomed Res. Int. 2014, 832704. https://doi.org/10.1155/2014/832704
  29. Liu, W. J., Ye, L., Huang, W. F., Guo, L. J., Xu, Z. G., Wu, H. L., Yang, C. and Liu, H. F. (2016) p62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation. Cell. Mol. Biol. Lett. 21, 29. https://doi.org/10.1186/s11658-016-0031-z
  30. Liu, Y., Kern, J. T., Walker, J. R., Johnson, J. A., Schultz, P. G. and Luesch, H. (2007) A genomic screen for activators of the antioxidant response element. Proc. Natl. Acad. Sci. U.S.A. 104, 5205-5210. https://doi.org/10.1073/pnas.0700898104
  31. Mackman, N., Brand, K. and Edgington, T. S. (1991) Lipopolysaccharide-mediated transcriptional activation of the human tissue factor gene in THP-1 monocytic cells requires both activator protein 1 and nuclear factor kappa B binding sites. J. Exp. Med. 174, 1517-1526. https://doi.org/10.1084/jem.174.6.1517
  32. Marino, S., Petrusca, D. N., Silberman, R., Toscani, D., Anderson, J. L., Giuliani, N., Xie, X. Q., Kurihara, N. and Roodman, G. D. (2017) Inhibition of p62-ZZ domain-mediated signaling overcomes bortezomib resistance in multiple myeloma cells independent of their p53 status. Blood 130, 4421.
  33. Masud, A., Mohapatra, A., Lakhani, S. A., Ferrandino, A., Hakem, R. and Flavell, R. A. (2007) Endoplasmic reticulum stress-induced death of mouse embryonic fibroblasts requires the intrinsic pathway of apoptosis. J. Biol. Chem. 282, 14132-14139. https://doi.org/10.1074/jbc.M700077200
  34. Meng, Q. and Xia, Y. (2011) c-Jun, at the crossroad of the signaling network. Protein Cell 2, 889-898. https://doi.org/10.1007/s13238-011-1113-3
  35. Milan, E., Perini, T., Resnati, M., Orfanelli, U., Oliva, L., Raimondi, A., Cascio, P., Bachi, A., Marcatti, M., Ciceri, F. and Cenci, S. (2015) A plastic SQSTM1/p62-dependent autophagic reserve maintains proteostasis and determines proteasome inhibitor susceptibility in multiple myeloma cells. Autophagy 11, 1161-1178. https://doi.org/10.1080/15548627.2015.1052928
  36. Moon, J. L., Kim, S. Y., Shin, S. W. and Park, J. W. (2012) Regulation of brefeldin A-induced ER stress and apoptosis by mitochondrial NADP+-dependent isocitrate dehydrogenase. Biochem. Biophys. Res. Commun. 417, 760-764. https://doi.org/10.1016/j.bbrc.2011.12.030
  37. Narendra, D., Kane, L. A., Hauser, D. N., Fearnley, I. M. and Youle, R. J. (2010) p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 6, 1090-1106. https://doi.org/10.4161/auto.6.8.13426
  38. Ogata, M., Hino, S., Saito, A., Morikawa, K., Kondo, S., Kanemoto, S., Murakami, T., Taniguchi, M., Tanii, I., Yoshinaga, K., Shiosaka, S., Hammarback, J. A., Urano, F. and Imaizumi, K. (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol. Cell. Biol. 26, 9220-9231. https://doi.org/10.1128/MCB.01453-06
  39. Pankiv, S., Clausen, T. H., Lamark, T., Brech, A., Bruun, J. A., Outzen, H., Overvatn, A., Bjorkoy, G. and Johansen, T. (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131-24145. https://doi.org/10.1074/jbc.M702824200
  40. Rubinsztein, D. C. (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780-786. https://doi.org/10.1038/nature05291
  41. Sano, R. and Reed, J. C. (2013) ER stress-induced cell death mechanisms. Biochim. Biophys. Acta 1833, 3460-3470. https://doi.org/10.1016/j.bbamcr.2013.06.028
  42. Seibenhener, M. L., Babu, J. R., Geetha, T., Wong, H. C., Krishna, N. R. and Wooten, M. W. (2004) Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol. Cell. Biol. 24, 8055-8068. https://doi.org/10.1128/MCB.24.18.8055-8068.2004
  43. Shaulian, E. and Karin, M. (2002) AP-1 as a regulator of cell life and death. Nat. Cell Biol. 4, E131-E136. https://doi.org/10.1038/ncb0502-e131
  44. Shin, W. H., Park, J. H. and Chung, K. C. (2020) The central regulator p62 between ubiquitin proteasome system and autophagy and its role in the mitophagy and Parkinson's disease. BMB Rep. 53, 56-63. https://doi.org/10.5483/BMBRep.2020.53.1.283
  45. Shvets, E., Fass, E., Scherz-Shouval, R. and Elazar, Z. (2008) The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes. J. Cell Sci. 121, 2685-2695. https://doi.org/10.1242/jcs.026005
  46. Song, P., Li, S., Wu, H., Gao, R., Rao, G., Wang, D., Chen, Z., Ma, B., Wang, H., Sui, N., Deng, H., Zhang, Z., Tang, T., Tan, Z., Han, Z., Lu, T., Zhu, Y. and Chen, Q. (2016) Parkin promotes proteasomal degradation of p62: implication of selective vulnerability of neuronal cells in the pathogenesis of Parkinson's disease. Protein Cell 7, 114-129. https://doi.org/10.1007/s13238-015-0230-9
  47. Tang, D., Kang, R., Berghe, T. V., Vandenabeele, P. and Kroemer, G. (2019) The molecular machinery of regulated cell death. Cell Res. 29, 347-364. https://doi.org/10.1038/s41422-019-0164-5
  48. Tian, Z., Wang, C., Hu, C., Tian, Y., Liu, J. and Wang, X. (2014) Autophagic-lysosomal inhibition compromises ubiquitin-proteasome system performance in a p62 dependent manner in cardiomyocytes. PLoS ONE 9, e100715. https://doi.org/10.1371/journal.pone.0100715
  49. Tilija Pun, N., Jang, W. J. and Jeong, C. H. (2020) Role of autophagy in regulation of cancer cell death/apoptosis during anti-cancer therapy: focus on autophagy flux blockade. Arch. Pharm. Res. 43, 475-488. https://doi.org/10.1007/s12272-020-01239-w
  50. Wang, C. and Wang, X. (2015) The interplay between autophagy and the ubiquitin-proteasome system in cardiac proteotoxicity. Biochim. Biophys. Acta 1852, 188-194. https://doi.org/10.1016/j.bbadis.2014.07.028
  51. Wang, D., Xu, Q., Yuan, Q., Jia, M., Niu, H., Liu, X., Zhang, J., Young, C. Y. and Yuan, H. (2019) Proteasome inhibition boosts autophagic degradation of ubiquitinated-AGR2 and enhances the antitumor efficiency of bevacizumab. Oncogene 38, 3458-3474. https://doi.org/10.1038/s41388-019-0675-z
  52. Wu, D., Hao, Z., Ren, H. and Wang, G. (2018) Loss of VAPB regulates autophagy in a Beclin 1-dependent manner. Neurosci. Bull. 34, 1037-1046. https://doi.org/10.1007/s12264-018-0276-9
  53. Yamaguchi, H. and Wang, H. G. (2004) CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J. Biol. Chem. 279, 45495-45502. https://doi.org/10.1074/jbc.M406933200
  54. Yang, J., Huang, M., Zhou, L., He, X., Jiang, X., Zhang, Y. and Xu, G. (2018) Cereblon suppresses lipopolysaccharide-induced inflammatory response through promoting the ubiquitination and degradation of c-Jun. J. Biol. Chem. 293, 10141-10157. https://doi.org/10.1074/jbc.RA118.002246
  55. Zaffagnini, G., Savova, A., Danieli, A., Romanov, J., Tremel, S., Ebner, M., Peterbauer, T., Sztacho, M., Trapannone, R., Tarafder, A. K., Sachse, C. and Martens, S. (2018) p62 filaments capture and present ubiquitinated cargos for autophagy. EMBO J. 37, e98308. https://doi.org/10.15252/embj.201798308
  56. Zhang, Y. B., Gong, J. L., Xing, T. Y., Zheng, S. P. and Ding, W. (2013) Autophagy protein p62/SQSTM1 is involved in HAMLET-induced cell death by modulating apotosis in U87MG cells. Cell Death Dis. 4, e550. https://doi.org/10.1038/cddis.2013.77
  57. Zhao, P., Xiao, X., Kim, A. S., Leite, M. F., Xu, J., Zhu, X., Ren, J. and Li, J. (2008) c-Jun inhibits thapsigargin-induced ER stress through up-regulation of DSCR1/Adapt78. Exp. Biol. Med. (Maywood) 233, 1289-1300. https://doi.org/10.3181/0803-RM-84
  58. Zhou, L., Hao, Z., Wang, G. and Xu, G. (2018) Cereblon suppresses the formation of pathogenic protein aggregates in a p62-dependent manner. Hum. Mol. Genet. 27, 667-678. https://doi.org/10.1093/hmg/ddx433
  59. Zhou, L., Wang, H., Chen, D., Gao, F., Ying, Z. and Wang, G. (2014) p62/Sequestosome 1 regulates aggresome formation of pathogenic ataxin-3 with expanded polyglutamine. Int. J. Mol. Sci. 15, 14997-15010. https://doi.org/10.3390/ijms150914997
  60. Zhu, K., Dunner, K., Jr. and McConkey, D. J. (2010) Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells. Oncogene 29, 451-462. https://doi.org/10.1038/onc.2009.343
  61. Zhu, X., Huang, L., Gong, J., Shi, C., Wang, Z., Ye, B., Xuan, A., He, X., Long, D., Zhu, X., Ma, N. and Leng, S. (2017) NF-κB pathway link with ER stress-induced autophagy and apoptosis in cervical tumor cells. Cell Death Dis. 3, 17059. https://doi.org/10.1038/cddiscovery.2017.59
  62. Zhu, Y., Lei, Q., Li, D., Zhang, Y., Jiang, X., Hu, Z. and Xu, G. (2018) Proteomic and biochemical analyses reveal a novel mechanism for promoting protein ubiquitination and degradation by UFBP1, a key component of ufmylation. J. Proteome Res. 17, 1509-1520. https://doi.org/10.1021/acs.jproteome.7b00843
  63. Zotti, T., Scudiero, I., Settembre, P., Ferravante, A., Mazzone, P., D'Andrea, L., Reale, C., Vito, P. and Stilo, R. (2014) TRAF6-mediated ubiquitination of NEMO requires p62/sequestosome-1. Mol. Immunol. 58, 27-31. https://doi.org/10.1016/j.molimm.2013.10.015

Cited by

  1. Proximity Labeling, Quantitative Proteomics, and Biochemical Studies Revealed the Molecular Mechanism for the Inhibitory Effect of Indisulam on the Proliferation of Gastric Cancer Cells vol.20, pp.9, 2021, https://doi.org/10.1021/acs.jproteome.1c00437