DOI QR코드

DOI QR Code

Late Passage Cultivation Induces Aged Astrocyte Phenotypes in Rat Primary Cultured Cells

  • Bang, Minji (Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University) ;
  • Gonzales, Edson Luck (Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University) ;
  • Shin, Chan Young (Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University) ;
  • Kwon, Kyoung Ja (Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University)
  • Received : 2020.10.06
  • Accepted : 2020.11.06
  • Published : 2021.03.01

Abstract

Astrocytes play various important roles such as maintaining brain homeostasis, supporting neurons, and secreting inflammatory mediators to protect the brain cells. In aged subjects, astrocytes show diversely changed phenotypes and dysfunctions. But, the study of aged astrocytes or astrocytes from aged subjects is not yet sufficient to provide a comprehensive understanding of their important processes in the regulation of brain function. In this study, we induced an in vitro aged astrocyte model through late passage cultivation of rat primary cultured astrocytes. Astrocytes were cultured until passage 7 (P7) as late passage astrocytes and compared with passage 1 (P1) astrocytes as early passage astrocytes to confirm the differences in phenotypes and the effects of serial passage. In this study, we confirmed the morphological, molecular, and functional changes of late passage astrocytes showing aging phenotypes through SA-β-gal staining and measurement of nuclear size. We also observed a reduced expression of inflammatory mediators including IL-1β, IL-6, TNFα, iNOS, and COX2, as well as dysregulation of wound-healing, phagocytosis, and mitochondrial functions such as mitochondrial membrane potential and mitochondrial oxygen consumption rate. Culture-conditioned media obtained from P1 astrocytes promoted neurite outgrowth in immature primary cultures of rat cortices, which is significantly reduced when we treated the immature neurons with the culture media obtained from P7 astrocytes. These results suggest that late passage astrocytes show senescent astrocyte phenotypes with functional defects, which makes it a suitable model for the study of the role of astrocyte senescence on the modulation of normal and pathological brain aging.

Keywords

References

  1. Abbott, N. J. (2002) Astrocyte-endothelial interactions and blood-brain barrier permeability. J. Anat. 200, 629-638. https://doi.org/10.1046/j.1469-7580.2002.00064.x
  2. Acosta, C., Anderson, H. D. and Anderson, C. M. (2017) Astrocyte dysfunction in Alzheimer disease. J. Neurosci. Res. 95, 2430-2447. https://doi.org/10.1002/jnr.24075
  3. Bang, M., Kim, D. G., Gonzales, E. L., Kwon, K. J. and Shin, C. Y. (2019a) Etoposide induces mitochondrial dysfunction and cellular senescence in primary cultured rat astrocytes. Biomol. Ther. (Seoul) 27, 530-539. https://doi.org/10.4062/biomolther.2019.151
  4. Bang, M., Ryu, O., Kim, D. G., Mabunga, D. F., Cho, K. S., Kim, Y., Han, S. H., Kwon, K. J. and Shin, C. Y. (2019b) Tenovin-1 induces senescence and decreases wound-healing activity in cultured rat primary astrocytes. Biomol. Ther. (Seoul) 27, 283-289. https://doi.org/10.4062/biomolther.2018.107
  5. Bhat, R., Crowe, E. P., Bitto, A., Moh, M., Katsetos, C. D., Garcia, F. U., Johnson, F. B., Trojanowski, J. Q., Sell, C. and Torres, C. (2012) Astrocyte senescence as a component of Alzheimer's disease. PLoS ONE 7, e45069. https://doi.org/10.1371/journal.pone.0045069
  6. Bhaumik, D., Scott, G. K., Schokrpur, S., Patil, C. K., Orjalo, A. V., Rodier, F., Lithgow, G. J. and Campisi, J. (2009) MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging (Albany N.Y.) 1, 402-411. https://doi.org/10.18632/aging.100042
  7. Blasko, I., Stampfer-Kountchev, M., Robatscher, P., Veerhuis, R., Eikelenboom, P. and Grubeck-Loebenstein, B. (2004) How chronic inflammation can affect the brain and support the development of Alzheimer's disease in old age: the role of microglia and astrocytes. Aging Cell 3, 169-176. https://doi.org/10.1111/j.1474-9728.2004.00101.x
  8. Blomquist, E., Westermark, B. and Ponten, J. (1980) Ageing of human glial cells in culture: increase in the fraction of non-dividers as demonstrated by a minicloning technique. Mech. Ageing Dev. 12, 173-182. https://doi.org/10.1016/0047-6374(80)90093-7
  9. Boraschi, D. and Italiani, P. (2014) Immunosenescence and vaccine failure in the elderly: strategies for improving response. Immunol. Lett. 162, 346-353. https://doi.org/10.1016/j.imlet.2014.06.006
  10. Burda, J. E., Bernstein, A. M. and Sofroniew, M. V. (2016) Astrocyte roles in traumatic brain injury. Exp. Neurol. 275 Pt 3, 305-315. https://doi.org/10.1016/j.expneurol.2015.03.020
  11. Caldeira, C., Oliveira, A. F., Cunha, C., Vaz, A. R., Falcao, A. S., Fernandes, A. and Brites, D. (2014) Microglia change from a reactive to an age-like phenotype with the time in culture. Front. Cell. Neurosci. 8, 152. https://doi.org/10.3389/fncel.2014.00152
  12. Campisi, J., Andersen, J. K., Kapahi, P. and Melov, S. (2011) Cellular senescence: a link between cancer and age-related degenerative disease? Semin. Cancer Biol. 21, 354-359. https://doi.org/10.1016/j.semcancer.2011.09.001
  13. Campuzano, O., Castillo-Ruiz, M. M., Acarin, L., Castellano, B. and Gonzalez, B. (2009) Increased levels of proinflammatory cytokines in the aged rat brain attenuate injury-induced cytokine response after excitotoxic damage. J. Neurosci. Res. 87, 2484-2497. https://doi.org/10.1002/jnr.22074
  14. Chang, H. N., Pang, J. H., Chen, C. P., Ko, P. C., Lin, M. S., Tsai, W. C. and Yang, Y. M. (2012) The effect of aging on migration, proliferation, and collagen expression of tenocytes in response to ciprofloxacin. J. Orthop. Res. 30, 764-768. https://doi.org/10.1002/jor.21576
  15. Collins-Hooper, H., Woolley, T. E., Dyson, L., Patel, A., Potter, P., Baker, R. E., Gaffney, E. A., Maini, P. K., Dash, P. R. and Patel, K. (2012) Age-related changes in speed and mechanism of adult skeletal muscle stem cell migration. Stem Cells 30, 1182-1195. https://doi.org/10.1002/stem.1088
  16. Dai, W., Zhou, J., Jin, B. and Pan, J. (2016) Class III-specific HDAC inhibitor Tenovin-6 induces apoptosis, suppresses migration and eliminates cancer stem cells in uveal melanoma. Sci. Rep. 6, 22622. https://doi.org/10.1038/srep22622
  17. De Cecco, M., Jeyapalan, J., Zhao, X., Tamamori-Adachi, M. and Sedivy, J. M. (2011) Nuclear protein accumulation in cellular senescence and organismal aging revealed with a novel single-cell resolution fluorescence microscopy assay. Aging (Albany N.Y.) 3, 955-967. https://doi.org/10.18632/aging.100372
  18. Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E. E., Linskens, M., Rubelj, I. and Pereira-Smith, O. (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. U.S.A. 92, 9363-9367. https://doi.org/10.1073/pnas.92.20.9363
  19. Dossi, E., Vasile, F. and Rouach, N. (2018) Human astrocytes in the diseased brain. Brain Res. Bull. 136, 139-156. https://doi.org/10.1016/j.brainresbull.2017.02.001
  20. Eckman, E. A., Reed, D. K. and Eckman, C. B. (2001) Degradation of the Alzheimer's amyloid beta peptide by endothelin-converting enzyme. J. Biol. Chem. 276, 24540-24548. https://doi.org/10.1074/jbc.M007579200
  21. Eckman, E. A., Watson, M., Marlow, L., Sambamurti, K. and Eckman, C. B. (2003) Alzheimer's disease beta-amyloid peptide is increased in mice deficient in endothelin-converting enzyme. J. Biol. Chem. 278, 2081-2084. https://doi.org/10.1074/jbc.C200642200
  22. Enokido, Y., Yoshitake, A., Ito, H. and Okazawa, H. (2008) Age-dependent change of HMGB1 and DNA double-strand break accumulation in mouse brain. Biochem. Biophys. Res. Commun. 376, 128-133. https://doi.org/10.1016/j.bbrc.2008.08.108
  23. Evans, R. J., Wyllie, F. S., Wynford-Thomas, D., Kipling, D. and Jones, C. J. (2003) A P53-dependent, telomere-independent proliferative life span barrier in human astrocytes consistent with the molecular genetics of glioma development. Cancer Res. 63, 4854-4861.
  24. Frankel, D., Mehindate, K. and Schipper, H. M. (2000) Role of heme oxygenase-1 in the regulation of manganese superoxide dismutase gene expression in oxidatively-challenged astroglia. J. Cell. Physiol. 185, 80-86. https://doi.org/10.1002/1097-4652(200010)185:1<80::AID-JCP7>3.0.CO;2-W
  25. Fulop, T., Le Page, A., Fortin, C., Witkowski, J. M., Dupuis, G. and Larbi, A. (2014) Cellular signaling in the aging immune system. Curr. Opin. Immunol. 29, 105-111. https://doi.org/10.1016/j.coi.2014.05.007
  26. Gerland, L. M., Peyrol, S., Lallemand, C., Branche, R., Magaud, J. P. and Ffrench, M. (2003) Association of increased autophagic inclusions labeled for beta-galactosidase with fibroblastic aging. Exp. Gerontol. 38, 887-895. https://doi.org/10.1016/S0531-5565(03)00132-3
  27. Golomb, L., Sagiv, A., Pateras, I. S., Maly, A., Krizhanovsky, V., Gorgoulis, V. G., Oren, M. and Ben-Yehuda, A. (2015) Age-associated inflammation connects RAS-induced senescence to stem cell dysfunction and epidermal malignancy. Cell Death Differ. 22, 1764-1774. https://doi.org/10.1038/cdd.2015.21
  28. Green, S. J., Mellouk, S., Hoffman, S. L., Meltzer, M. S. and Nacy, C. A. (1990) Cellular mechanisms of nonspecific immunity to intracellular infection: cytokine-induced synthesis of toxic nitrogen oxides from L-arginine by macrophages and hepatocytes. Immunol. Lett. 25, 15-19. https://doi.org/10.1016/0165-2478(90)90083-3
  29. Grolleau-Julius, A., Harning, E. K., Abernathy, L. M. and Yung, R. L. (2008) Impaired dendritic cell function in aging leads to defective antitumor immunity. Cancer Res. 68, 6341-6349. https://doi.org/10.1158/0008-5472.CAN-07-5769
  30. Halle, A., Hornung, V., Petzold, G. C., Stewart, C. R., Monks, B. G., Reinheckel, T., Fitzgerald, K. A., Latz, E., Moore, K. J. and Golenbock, D. T. (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol. 9, 857-865. https://doi.org/10.1038/ni.1636
  31. Hayflick, L. and Moorhead, P. S. (1961) The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585-621. https://doi.org/10.1016/0014-4827(61)90192-6
  32. Hong, S. H., Lee, M. H., Koo, M. A., Seon, G. M., Park, Y. J., Kim, D. and Park, J. C. (2019) Stem cell passage affects directional migration of stem cells in electrotaxis. Stem Cell Res. 38, 101475. https://doi.org/10.1016/j.scr.2019.101475
  33. Hou, J., Cui, C., Kim, S., Sung, C. and Choi, C. (2018) Ginsenoside F1 suppresses astrocytic senescence-associated secretory phenotype. Chem. Biol. Interact. 283, 75-83. https://doi.org/10.1016/j.cbi.2018.02.002
  34. Hsu, J. Y., Bourguignon, L. Y., Adams, C. M., Peyrollier, K., Zhang, H., Fandel, T., Cun, C. L., Werb, Z. and Noble-Haeusslein, L. J. (2008) Matrix metalloproteinase-9 facilitates glial scar formation in the injured spinal cord. J. Neurosci. 28, 13467-13477. https://doi.org/10.1523/JNEUROSCI.2287-08.2008
  35. Izadpanah, R., Kaushal, D., Kriedt, C., Tsien, F., Patel, B., Dufour, J. and Bunnell, B. A. (2008) Long-term in vitro expansion alters the biology of adult mesenchymal stem cells. Cancer Res. 68, 4229-4238. https://doi.org/10.1158/0008-5472.CAN-07-5272
  36. Jung, Y. J. and Chung, W. S. (2018) Phagocytic roles of glial cells in healthy and diseased brains. Biomol. Ther. (Seoul) 26, 350-357. https://doi.org/10.4062/biomolther.2017.133
  37. Lee, B. Y., Han, J. A., Im, J. S., Morrone, A., Johung, K., Goodwin, E. C., Kleijer, W. J., DiMaio, D. and Hwang, E. S. (2006) Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 5, 187-195. https://doi.org/10.1111/j.1474-9726.2006.00199.x
  38. Li, Y. N., Pan, R., Qin, X. J., Yang, W. L., Qi, Z., Liu, W. and Liu, K. J. (2014) Ischemic neurons activate astrocytes to disrupt endothelial barrier via increasing VEGF expression. J. Neurochem. 129, 120-129. https://doi.org/10.1111/jnc.12611
  39. Lian, J., Lv, S., Liu, C., Liu, Y., Wang, S., Guo, X., Nan, F., Yu, H., He, X., Sun, G. and Ma, X. (2016) Effects of serial passage on the characteristics and cardiac and neural differentiation of human umbilical cord Wharton's jelly-derived mesenchymal stem cells. Stem Cells Int. 2016, 9291013.
  40. Liddelow, S. A., Guttenplan, K. A., Clarke, L. E., Bennett, F. C., Bohlen, C. J., Schirmer, L., Bennett, M. L., Munch, A. E., Chung, W. S., Peterson, T. C., Wilton, D. K., Frouin, A., Napier, B. A., Panicker, N., Kumar, M., Buckwalter, M. S., Rowitch, D. H., Dawson, V. L., Dawson, T. M., Stevens, B. and Barres, B. A. (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481-487. https://doi.org/10.1038/nature21029
  41. Logan, S., Pharaoh, G. A., Marlin, M. C., Masser, D. R., Matsuzaki, S., Wronowski, B., Yeganeh, A., Parks, E. E., Premkumar, P., Farley, J. A., Owen, D. B., Humphries, K. M., Kinter, M., Freeman, W. M., Szweda, L. I., Van Remmen, H. and Sonntag, W. E. (2018) Insulin-like growth factor receptor signaling regulates working memory, mitochondrial metabolism, and amyloid-beta uptake in astrocytes. Mol. Metab. 9, 141-155. https://doi.org/10.1016/j.molmet.2018.01.013
  42. Lutz, C. T. and Quinn, L. S. (2012) Sarcopenia, obesity, and natural killer cell immune senescence in aging: altered cytokine levels as a common mechanism. Aging (Albany N.Y.) 4, 535-546. https://doi.org/10.18632/aging.100482
  43. McHugh, D. and Gil, J. (2018) Senescence and aging: causes, consequences, and therapeutic avenues. J. Cell Biol. 217, 65-77. https://doi.org/10.1083/jcb.201708092
  44. Miranda, C. J., Braun, L., Jiang, Y., Hester, M. E., Zhang, L., Riolo, M., Wang, H., Rao, M., Altura, R. A. and Kaspar, B. K. (2012) Aging brain microenvironment decreases hippocampal neurogenesis through Wnt-mediated survivin signaling. Aging Cell 11, 542-552. https://doi.org/10.1111/j.1474-9726.2012.00816.x
  45. Montgomery, R. R. and Shaw, A. C. (2015) Paradoxical changes in innate immunity in aging: recent progress and new directions. J. Leukoc. Biol. 98, 937-943. https://doi.org/10.1189/jlb.5MR0315-104R
  46. Moraga, A., Pradillo, J. M., Garcia-Culebras, A., Palma-Tortosa, S., Ballesteros, I., Hernandez-Jimenez, M., Moro, M. A. and Lizasoain, I. (2015) Aging increases microglial proliferation, delays cell migration, and decreases cortical neurogenesis after focal cerebral ischemia. J. Neuroinflammation 12, 87. https://doi.org/10.1186/s12974-015-0314-8
  47. Morales, I., Guzman-Martinez, L., Cerda-Troncoso, C., Farias, G. A. and Maccioni, R. B. (2014) Neuroinflammation in the pathogenesis of Alzheimer's disease. A rational framework for the search of novel therapeutic approaches. Front. Cell. Neurosci. 8, 112. https://doi.org/10.3389/fncel.2014.00112
  48. Munoz-Najar, U. and Sedivy, J. M. (2011) Epigenetic control of aging. Antioxid. Redox Signal. 14, 241-259. https://doi.org/10.1089/ars.2010.3250
  49. Murphy, N. and Lynch, M. A. (2012) Activation of the P2X(7) receptor induces migration of glial cells by inducing cathepsin B degradation of tissue inhibitor of metalloproteinase 1. J. Neurochem. 123, 761-770. https://doi.org/10.1111/jnc.12031
  50. Nadal-Nicolas, F. M., Galindo-Romero, C., Valiente-Soriano, F. J., Barbera-Cremades, M., deTorre-Minguela, C., Salinas-Navarro, M., Pelegrin, P. and Agudo-Barriuso, M. (2016) Involvement of P2X7 receptor in neuronal degeneration triggered by traumatic injury. Sci. Rep. 6, 38499. https://doi.org/10.1038/srep38499
  51. Pertusa, M., Garcia-Matas, S., Rodriguez-Farre, E., Sanfeliu, C. and Cristofol, R. (2007) Astrocytes aged in vitro show a decreased neuroprotective capacity. J. Neurochem. 101, 794-805. https://doi.org/10.1111/j.1471-4159.2006.04369.x
  52. Phatnani, H. and Maniatis, T. (2015) Astrocytes in neurodegenerative disease. Cold Spring Harb. Perspect. Biol. 7, a020628. https://doi.org/10.1101/cshperspect.a020628
  53. Poland, G. A., Ovsyannikova, I. G., Kennedy, R. B., Lambert, N. D. and Kirkland, J. L. (2014) A systems biology approach to the effect of aging, immunosenescence and vaccine response. Curr. Opin. Immunol. 29, 62-68. https://doi.org/10.1016/j.coi.2014.04.005
  54. Ponten, J. and Macintyre, E. H. (1968) Long term culture of normal and neoplastic human glia. Acta Pathol. Microbiol. Scand. 74, 465-486. https://doi.org/10.1111/j.1699-0463.1968.tb03502.x
  55. Ponten, J., Stein, W. D. and Shall, S. (1983) A quantitative analysis of the aging of human glial cells in culture. J. Cell. Physiol. 117, 342-352. https://doi.org/10.1002/jcp.1041170309
  56. Ries, M. and Sastre, M. (2016) Mechanisms of Abeta clearance and degradation by glial cells. Front. Aging Neurosci. 8, 160. https://doi.org/10.3389/fnagi.2016.00160
  57. Rodier, F. and Campisi, J. (2011) Four faces of cellular senescence. J. Cell Biol. 192, 547-556. https://doi.org/10.1083/jcb.201009094
  58. Rosenstiel, P., Derer, S., Till, A., Hasler, R., Eberstein, H., Bewig, B., Nikolaus, S., Nebel, A. and Schreiber, S. (2008) Systematic expression profiling of innate immune genes defines a complex pattern of immunosenescence in peripheral and intestinal leukocytes. Genes Immun. 9, 103-114. https://doi.org/10.1038/sj.gene.6364454
  59. Rozovsky, I., Wei, M., Morgan, T. E. and Finch, C. E. (2005) Reversible age impairments in neurite outgrowth by manipulations of astrocytic GFAP. Neurobiol. Aging 26, 705-715. https://doi.org/10.1016/j.neurobiolaging.2004.06.009
  60. Sadaba, M. C., Martin-Estal, I., Puche, J. E. and Castilla-Cortazar, I. (2016) Insulin-like growth factor 1 (IGF-1) therapy: mitochondrial dysfunction and diseases. Biochim. Biophys. Acta 1862, 1267-1278. https://doi.org/10.1016/j.bbadis.2016.03.010
  61. Salminen, A., Ojala, J., Kaarniranta, K., Haapasalo, A., Hiltunen, M. and Soininen, H. (2011) Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. Eur. J. Neurosci. 34, 3-11. https://doi.org/10.1111/j.1460-9568.2011.07738.x
  62. Schipper, H. M., Bernier, L., Mehindate, K. and Frankel, D. (1999) Mitochondrial iron sequestration in dopamine-challenged astroglia: role of heme oxygenase-1 and the permeability transition pore. J. Neurochem. 72, 1802-1811. https://doi.org/10.1046/j.1471-4159.1999.0721802.x
  63. Scuderi, C., Stecca, C., Iacomino, A. and Steardo, L. (2013) Role of astrocytes in major neurological disorders: the evidence and implications. IUBMB Life 65, 957-961. https://doi.org/10.1002/iub.1223
  64. Seifert, G., Schilling, K. and Steinhauser, C. (2006) Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat. Rev. Neurosci. 7, 194-206. https://doi.org/10.1038/nrn1870
  65. Shall, S. and Stein, W. D. (1979) A mortalization theory for the control of the cell proliferation and for the origin of immortal cell lines. J. Theor. Biol. 76, 219-231. https://doi.org/10.1016/0022-5193(79)90371-0
  66. Sidoryk-Wegrzynowicz, M., Wegrzynowicz, M., Lee, E., Bowman, A. B. and Aschner, M. (2011) Role of astrocytes in brain function and disease. Toxicol. Pathol. 39, 115-123. https://doi.org/10.1177/0192623310385254
  67. Simard, M. and Nedergaard, M. (2004) The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 129, 877-896. https://doi.org/10.1016/j.neuroscience.2004.09.053
  68. Sochocka, M., Sobczynski, M., Sender-Janeczek, A., Zwolinska, K., Blachowicz, O., Tomczyk, T., Zietek, M. and Leszek, J. (2017) Association between periodontal health status and cognitive abilities. The role of cytokine profile and systemic inflammation. Curr. Alzheimer Res. 14, 978-990.
  69. Wagner, W., Bork, S., Horn, P., Krunic, D., Walenda, T., Diehlmann, A., Benes, V., Blake, J., Huber, F. X., Eckstein, V., Boukamp, P. and Ho, A. D. (2009) Aging and replicative senescence have related effects on human stem and progenitor cells. PLoS ONE 4, e5846. https://doi.org/10.1371/journal.pone.0005846
  70. Wittko, I. M., Schanzer, A., Kuzmichev, A., Schneider, F. T., Shibuya, M., Raab, S. and Plate, K. H. (2009) VEGFR-1 regulates adult olfactory bulb neurogenesis and migration of neural progenitors in the rostral migratory stream in vivo. J. Neurosci. 29, 8704-8714. https://doi.org/10.1523/JNEUROSCI.5527-08.2009
  71. Wong, C. and Goldstein, D. R. (2013) Impact of aging on antigen presentation cell function of dendritic cells. Curr. Opin. Immunol. 25, 535-541. https://doi.org/10.1016/j.coi.2013.05.016
  72. Yan, P., Hu, X., Song, H., Yin, K., Bateman, R. J., Cirrito, J. R., Xiao, Q., Hsu, F. F., Turk, J. W., Xu, J., Hsu, C. Y., Holtzman, D. M. and Lee, J. M. (2006) Matrix metalloproteinase-9 degrades amyloidbeta fibrils in vitro and compact plaques in situ. J. Biol. Chem. 281, 24566-24574. https://doi.org/10.1074/jbc.M602440200
  73. Yin, K. J., Cirrito, J. R., Yan, P., Hu, X., Xiao, Q., Pan, X., Bateman, R., Song, H., Hsu, F. F., Turk, J., Xu, J., Hsu, C. Y., Mills, J. C., Holtzman, D. M. and Lee, J. M. (2006) Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-beta peptide catabolism. J. Neurosci. 26, 10939-10948. https://doi.org/10.1523/jneurosci.2085-06.2006
  74. Yoon, K. B., Park, K. R., Kim, S. Y. and Han, S. Y. (2016) Induction of nuclear enlargement and senescence by sirtuin inhibitors in glioblastoma cells. Immune. Netw. 16, 183-188. https://doi.org/10.4110/in.2016.16.3.183
  75. Yu, Z., Yi, M., Wei, T., Gao, X. and Chen, H. (2017) KCa3.1 inhibition switches the astrocyte phenotype during astrogliosis associated with ischemic stroke via endoplasmic reticulum stress and MAPK signaling pathways. Front. Cell. Neurosci. 11, 319.
  76. Zhu, L., Yu, J., Shi, Q., Lu, W., Liu, B., Xu, S., Wang, L., Han, J. and Wang, X. (2011) Strain- and age-related alteration of proteins in the brain of SAMP8 and SAMR1 mice. J. Alzheimers Dis. 23, 641-654. https://doi.org/10.3233/JAD-2010-101389