DOI QR코드

DOI QR Code

Evaluating meteorological and hydrological impacts on forest fire occurrences using partial least squares-structural equation modeling: a case of Gyeonggi-do

부분최소제곱 구조방정식모형을 이용한 경기도 지역 산불 발생 요인에 대한 기상 및 수문학적 요인의 영향 분석

  • Kim, Dongwook (Department of Civil and Environmental System Engineering, Hanyang University) ;
  • Yoo, Jiyoung (Research Institute of Engineering Technology, Hanyang University) ;
  • Son, Ho Jun (Department of Smart City Engineering, Hanyang University) ;
  • Kim, Tae-Woong (Department of Civil and Environmental Engineering / Smart City Engineering, Hanyang University)
  • 김동욱 (한양대학교 대학원 건설환경시스템공학과) ;
  • 유지영 (한양대학교(ERICA) 공학기술연구소) ;
  • 손호준 (한양대학교 대학원 스마트시티공학과) ;
  • 김태웅 (한양대학교(ERICA) 건설환경공학과/스마트시티공학과)
  • Received : 2020.12.08
  • Accepted : 2021.01.11
  • Published : 2021.03.31

Abstract

Forest fires have frequently occurred around the world, and the damages are increasing. In Korea, most forest fires are initiated by human activities, but climate factors such as temperature, humidity, and wind speed have a great impact on combustion environment of forest fires. In this study, therefore, based on statistics of forest fires in Gyeonggi-do over the past five years, meteorological and hydrological factors (i.e., temperature, humidity, wind speed, precipitation, and drought) were selected in order to quantitatively investigate causal relationships with forest fire. We applied a partial least squares structural equation model (PLS-SEM), which is suitable for analyzing causality and predicting latent variables. The overall results indicated that the measurement and structural models of the PLS-SEM were statistically significant for all evaluation criteria, and meteorological factors such as humidity, temperature, and wind speed affected by amount of -0.42, 0.23 and 0.15 of standardized path coefficient, respectively, on forest fires, whereas hydrological factor such as drought had an effect of 0.23 on forest fires. Therefore, as a practical method, the suggested model can be used for analyzing and evaluating influencing factors of forest fire and also for planning response and preparation of forest fire disasters.

우리나라와 세계 곳곳에서는 대형 산불이 빈번하게 발생하고 있으며, 이로 인한 피해가 증가하고 있다. 우리나라에서 산불은 대부분 입산자 실화, 소각 산불 등의 인위적인 원인으로 발생하지만, 기온과 습도, 풍속 등의 기상인자는 산불의 연소 환경에 큰 영향을 미친다. 본 연구에서는 최근 5년간 경기도 지역에서 발생한 산불을 바탕으로, 산불 발생에 영향을 미치는 요인으로 온도, 습도, 풍속, 강수, 가뭄 요인을 선정하여 이들 간의 인과관계를 정량적으로 평가하였다. 분석을 위한 기법으로 인과관계의 발견 및 잠재변수의 예측에 적합한 부분최소제곱 구조방정식모형을 활용하였다. 연구 모형의 평가 결과, 본 연구에서 구축한 측정모형과 구조모형은 6가지 평가기준 모두에서 통계적으로 유의한 것으로 나타났다. 영향정도를 표준화된 경로계수로 표현하면, 기상학적 요인인 습도, 온도 그리고 풍속은 산불 발생에 각각 -0.42, 0.23, 0.15만큼의 영향을 나타내며, 수문학적 요인인 가뭄은 산불 발생에 0.23만큼의 영향요인으로 작용하는 것으로 나타났다. 따라서 본 연구는 실제 적용가능한 방법으로써 산불 영향요인의 분석과 이에 대한 평가, 그리고, 산불 재난의 대응·대비 계획 수립에 활용될 수 있을 것이다.

Keywords

References

  1. Chin, W.W. (1998). "The partial least squares approach to structural equation modeling." Modern methods for business research, Edited by Marcoulides, G.A., Lawrence Erlbaum, NJ, U.S., pp. 295-336.
  2. Clark, J.S., Royall, P.D., and Chumbley, C. (1996). "The role of fire during climate change in an eastern deciduous forest at Devil's Bathtub, New York." Ecology, Vol. 77, No. 7, pp. 2148-2166. https://doi.org/10.2307/2265709
  3. Cohen, J. (1988). Statistical power analysis for the behavioral sciences, Lawrence Erlbaum, NJ, U.S.
  4. Cunningham, A.A., and Martell, D.L. (1973). "A stochastic model for the occurrence of man-caused forest fires." Canadian Journal of Forest Research, Vol. 3, pp. 282-287. https://doi.org/10.1139/x73-038
  5. Dijkstra, T.K., and Henseler, J. (2015). "Consistent partial least squares path modeling." MIS Quarterly, Vol. 39, No. 2, pp. 297-316. https://doi.org/10.25300/MISQ/2015/39.2.02
  6. Flannigan, M.D., Stocks, B.J., and Wotton, B.M. (2000). "Climate change and forest fires." Science of The Total Environment, Vol. 262, No. 3, pp. 221-229. https://doi.org/10.1016/S0048-9697(00)00524-6
  7. Fornell, C., and Larcker, D.F. (1981). "Evaluating structural equation models with unobservable variables and measurement error." Journal of Marketing Research, Vol. 18, pp. 39-50. https://doi.org/10.1177/002224378101800104
  8. Geisser, S. (1974). "A predictive approach to the random effects model." Biometrika, Vol. 61, pp. 101-107. https://doi.org/10.1093/biomet/61.1.101
  9. Geographic Area Coordination Center (GACC) (2020). 2020 National large incident year-to-date report. National Interagency Fire Center, ID, U.S., pp. 1-66.
  10. Hair, J.F., Hult, G.T. M., Ringle, C.M., and Sarstedt, M. (2016). A primer on partial least squares structural equation modeling (PLS-SEM), 2nd Ed. Sage Publications, Los Angeles, CA, U.S.
  11. Hair, J.F., Sarstedt, M., Pieper, T.M., and Ringle, C.M. (2012). "The use of partial least squares structural equation modelling in strategic management research: A review of past practices and recommendations for future applications." Long Range Planning, Vol. 45, No. 5, pp. 320-340. https://doi.org/10.1016/j.lrp.2012.09.008
  12. Henseler, J., Ringle, C.M., and Sarstedt, M. (2015). "A new criterion for assessing discrminant validity in variance-based structural equation modeling." Journal of the Academy of Marketing Science, Vol. 43, pp. 115-135. https://doi.org/10.1007/s11747-014-0403-8
  13. Henseler, J., Ringle, C.M., and Sinkovics, R.R. (2009). "The use of partial least squares path modeling in international marketing." Advances in International Marketing, Vol. 20, pp. 277-320. https://doi.org/10.1108/S1474-7979(2009)0000020014
  14. Jang, M.J., and Kim, T.H. (2012). "An analysis of causal relationship between the density of land use types, and land value using PLS-structural equation model: A case of 25 Gu-districts in Seoul." Journal of The Korean Urban Management Association, Vol. 25, No. 3, pp. 65-87. (in Korean)
  15. Kim, H.J. (2020). Current status of forest fires, accessed 3 December 2020, .
  16. Kim, S.S., Lee, M.W., and Lee, J.H. (2015). "Characteristics of forest fires at Yeongdong in Gangwondo since 1990s." Journal of Korean Society of Hazard Mitigation. Vol. 15, No. 4, pp. 71-77. (in Korean) https://doi.org/10.9798/KOSHAM.2015.15.4.71
  17. Korea Forest Service (KFS) (2016). 2015 statistical yearbook of forest fire. (in Korean)
  18. Korea Forest Service (KFS) (2018). Standard manual for forest fire crisis management. (in Korean)
  19. Korea Forest Service (KFS) (2019). 2018 statistical yearbook of forest fire. (in Korean)
  20. Korea Forest Service (KFS) (2020). 2019 statistical yearbook of forest fire. (in Korean)
  21. Lee, S.Y. (2009). "Forest fires and weather." Korean Society of Hazard Mitigation, Vol. 9, No. 2, pp. 19-23. (in Korean)
  22. Littell, J.S., Peterson, D.L., Riley, K.L., Liu, Y., and Luce, C.H. (2016). "A review of the relationship between drought and forest fire in the United States." Global Change Biology, Vol. 22, No. 7, pp. 2353-2369. https://doi.org/10.1111/gcb.13275
  23. Marin, P.G., Julio, C., Dante Arturo, R.T., and Daniel Jose, V.N. (2018). "Drought and spatiotemporal variability of forest fires across Mexico." Chineses Geographical Science, Vol. 28, No. 1, pp. 25-37. https://doi.org/10.1007/s11769-017-0928-0
  24. Monecke, A., and Leisch, F. (2012). "SemPLS: Structural equation modelling using partial least squares." Journal of Statistical Software, Vol. 48, No. 3, pp. 1-32.
  25. National Institute of Forest Science (NIFoS) (2020). Current state of forest fire management in Australia. National Institute of Forest Science, Korea. (in Korean)
  26. Nunnally, J.C., and Bernstein, I.H. (1994). Psychometric theory, McGraw Hill, NY, U.S.
  27. Shin, G.G. (2018). Partial least squares structural equation modeling (PLS-SEM) with SmartPLS 3.0, SPSS, G*Power. Chungram, Korea. (in Korean)
  28. Song, M.J., and Lee, J.Y. (2011). "A study on tourist satisfaction of Daegu City Tour using a structural equation model." Journal of the Korean Data and Information Science Society, Vol. 22, No. 6, pp. 1075-1087. (in Korean)
  29. Stone, M. (1974). "Cross-validatory choice and assessment of statistical predictions." Journal of the Royal Statistical Society, Vol. 36, pp. 111-147.
  30. Sung, M.K., Lim, G.H., Choi, E.H., Lee, Y.Y., Won, M.S., and Koo, K.S. (2010). "Climate change over Korea and its relation to the forest fire occurrence." Atmosphere, Vol. 20, No. 1, pp. 27-35. (in Korean)
  31. Tenenhaus, M., Esposito, V.V., Chatelin, Y.M., and Lauro, C. (2005). "PLS path modeling." Computational Statistics and Data Analysis, Vol. 48, pp. 159-205. https://doi.org/10.1016/j.csda.2004.03.005
  32. Yoon, S.H., and Won, M.S. (2016). "Correlation analysis of forest fire occurences by change of standardized precipitation index." Journal of the Korean Association of Geographic Information Studies, Vol. 19, No. 2, pp. 14-26. (in Korean) https://doi.org/10.11108/kagis.2016.19.2.014