DOI QR코드

DOI QR Code

A Study on the Development of Korean Defense Standards through Text Mining-Based Trend Analysis of United States Defense Standards

텍스트 마이닝 기반의 미국 국방 표준 동향 분석을 통한 한국 국방 표준의 발전 방안 연구

  • Chae, Soohwan (Standardization Research Team 1, Standardization & Certification Research Division, Defense Agency for Technology and Quality) ;
  • Shim, Bohyun (Standardization Research Team 1, Standardization & Certification Research Division, Defense Agency for Technology and Quality) ;
  • Yeom, Seulki (Standardization Research Team 1, Standardization & Certification Research Division, Defense Agency for Technology and Quality) ;
  • Hong, Seongdon (Standardization Research Team 1, Standardization & Certification Research Division, Defense Agency for Technology and Quality)
  • 채수환 (국방기술품질원 표준인증연구부 표준화연구1팀) ;
  • 심보현 (국방기술품질원 표준인증연구부 표준화연구1팀) ;
  • 염슬기 (국방기술품질원 표준인증연구부 표준화연구1팀) ;
  • 홍성돈 (국방기술품질원 표준인증연구부 표준화연구1팀)
  • Received : 2020.12.29
  • Accepted : 2021.03.05
  • Published : 2021.03.31

Abstract

This study examined the trend of standards established in the United States and to find points that can be applied to Korean defense standards. The titles of various United States defense standard documents registered on the web were selected for this research. The wordcloud was created after analyzing the frequency of words appearing in the title using text mining. The trend of words appearing in MIL-STD by era was obtained. This study identified words that appear often due to the format of the document itself, words that appear regularly throughout the era, words that are used frequently in the past but are not used much in the present, and words that did not receive attention in the past but appeared recurrently in the present. In addition, the characteristics of each document were derived through the wordcloud produced for various defense documents. In conclusion, Korean defense standards also require a consideration of safe and efficient management, transport, and load design of hazardous materials. Furthermore, the quality of defense standards can be expected to improve if the defense standard document system can be established, focusing on efficient management.

본 연구는 국방 분야 선진국인 미국의 표준에 대한 제정 동향을 파악하고, 한국 국방 표준에 적용 가능한 방안을 검토하였다. 이를 위해 웹에 등록된 MIL-STD를 비롯하여 다양한 미국 국방 문서에 대해 제목을 중심 데이터를 수집한 후, 텍스트 마이닝을 이용하여 단어 빈도를 분석하고 그 결과를 워드클라우드 형태로 생성하였다. 그 결과, 시대별로 MIL-STD에 등장하는 단어의 동향을 파악할 수 있었다. 문서 자체의 형식으로 인해 많이 등장하는 단어, 전 시대에 걸쳐 많이 등장하는 단어도 있는 반면, 과거에는 자주 쓰이다 현재는 많이 쓰이지 않는 단어나 과거에는 주목을 받지 못하다가 현재에 와서야 많이 등장하는 단어도 파악이 가능하였다. 또한 MIL-STD를 포함한 다양한 국방 문서를 대상으로 생성한 워드클라우드를 통해 그 특징을 도출하였다. 결론적으로 한국 국방 표준도 재료의 안전한 사용 및 다양한 화물 운반 기준을 마련하는 것에 대한 고민이 필요한 것을 확인하였다. 더 나아가 국방 분야 표준 및 규격에 4차 산업혁명 등과 관련된 최신 기술을 반영하여 표준을 선점하고 규격을 마련하는 것이 중요할 것이다. 또한 국방표준 문서체계를 명확하게 정립하고 효율적인 관리에 투자한다면, 국방 분야 표준의 질 향상을 기대할 수 있을 것이다.

Keywords

References

  1. S. W. Lee, S-LIFE Vol.184, p.70, Korean Agency for Technology and Standards, 2020, pp.2-11
  2. C. S. Kim, Y. M. Lee, S. H. Lee, D. S. Seo, "A Study on Activation Plan of Performance Military Specification", Military Forum, Vol.79, pp.164-184, 2014.
  3. S. C. Choi, Y. H. Song, "A Study on the Development of Defense Performance Specification and Conversion into it", Journal of the Military Operations Research Society of Korea, Vol.33, No.1, pp.135-155, 2007.
  4. H. I. Shin, Y. J. Kim, "A Study on the Improvement of the policies and systems related to Performance Specification", Journal of the KIMST, Vol.4, No.2, pp.97-104, 2001.
  5. C. Yi, Defense Standardization Guidebook, p.94, Defense Agency for Technology and Quality, 2020.
  6. S. Ree, "Analysis of Research Trends in Journal of Korean Society for Quality Management by Text Mining Processing", Journal of the Korean Society for Quality Management, Vol.47, No.3, pp.597-613, 2019. DOI: https://doi.org/10.7469/JKSQM.2019.47.3.597
  7. H. Kim, N. Jo, K. Shin, "Text Mining-Based Emerging Trend Analysis for the Aviation Industry", Journal of Intelligence and Information Systems, Vol.21, No.1, pp.65-82, 2015. DOI: https://doi.org/10.13088/JIIS.2015.21.1.65
  8. C. Lee, H. Moon, "Study on analysis of North Korea's news trends associated with provocations using text mining", Journal of National Defense Studies, Vol.59, No.4, pp.103-124, 2016.
  9. S. Kim, Y. J. Lee, J. Shin, K. Y. Park, "Text Mining for Economic Analysis", SSRN Electronic Journal, 2019. DOI: http://dx.doi.org/10.2139/ssrn.3405781
  10. S. M. Kim, "Analysis of Press Articles in Korean Media on Online Education related to COVID-19", Journal of Digital Contents Society, Vol.21, No.6, pp.1091-1100, 2020. DOI: http://dx.doi.org/10.9728/DCS.2020.21.6.1091
  11. I. G. Go, "Big Data Analysis of Standards and Standards Education by Text Mining", Journal of Standards, Certification and Safety, Vol.8, No.4, pp.19-32, 2018.
  12. J. Yoon, W. Kim, H. Lee, "Analysis of Enactment and Utilization of Korean Industrial Standards(KS) by Time Series Data Mining", Journal of Technology Innovation, Vol.23, No.3, pp.225-253, 2015. DOI: http://dx.doi.org/10.14386/SIME.2015.23.3.225
  13. R. Feldman, I. Dagan, "Knowledge Discovery in Textual Databases (KDT)", KDD'95: Proceedings of the First International Conference on Knowledge Discovery and Data Mining, AAAI Press, pp.112-117, 1995.
  14. Y. Zhang, R. Jin, Z. H. Zhou, "Understanding bag-of-words model: a statistical framework", International Journal of Machine Learning and Cybernetics, Vol.1, No.1-4, pp.43-52, 2010. DOI: http://dx.doi.org/10.1007/S13042-010-0001-0
  15. A. Aizawa, "An information-theoretic perspective of tf -idf measures", Information Processing & Management, Vol.39, No.1, pp.45-65, 2003. DOI: http://dx.doi.org/10.1016/S0306-4573(02)00021-3
  16. G. Salton, C. Buckley, "Term-weighting approaches in automatic text retrieval", Information processing & management, Vol.24, No.5, pp.513-523, 1988. DOI: http://dx.doi.org/10.1016/0306-4573(88)90021-0
  17. M. A. Russell, Mining the social web, 2nd Edition, p.496, bjpublic, 2015.
  18. D. Helic, C. Trattner, M. Strohmaier, K. Andrews, "Are tag clouds useful for navigation? a network-theoretic analysis", International Journal of Social Computing and Cyber-Physical Systems, Vol.1, No,1, pp.33-55, 2011. DOI: http://dx.doi.org/10.1504/IJSCCPS.2011.043603
  19. DoD Manual 4120.24, Defense Standardization Program (DSP) Procedures, 2014, Available from: https://www.dsp.dla.mil/Policy-Guidance/ (accessed Dec. 1, 2020)
  20. K. K. Park, H. J. Oh, N. Y. Kim, Must Learning with R, WikiDocs, 2020, Available from: https://wikidocs.net/book/4315 (accessed Dec. 1, 2020)
  21. W. J. Yoo, Deep Learning for Natural Language Processing, WikiDocs, 2020, Available from: https://wikidocs.net/book/2155 (accessed Dec. 1, 2020)